Answer:
B. The number of atoms in a molecular formula is always greater than the number of atoms in an empirical formula.
Explanation:
It is not always true that the number of atoms in a molecular formula is always greater than the number of atoms in an empirical formula.
The chemical formulae of a compound are of two main types;
- The empirical formula is that which expresses the composition of a compound in the simplest whole number ratio.
- The molecular formula shows the actual ratio of the atoms in a compound.
Sometimes the number of atoms in the molecular and empirical formula can be the same.
Also, the number of atoms in the molecular formula is always greater than that of the empirical formula when they are not the same.
The law of conservation of mass states that mass is neither created nor destroyed. Since we have 2 g/mol of A and 3 g/mol of B then AB should be equal to the sum of their molar mass that is
2 g/mol + 3 g/mol = 5 g/mol AB
for the case of A2B3
A2 = 2 * 2 = 4 g/mol
B3 = 3 * 3 = 9 g/mol
therefore A2B3 = 13 g/mol
Answer:
First
divide each element by its Molecular Mass to get their respective moles
Then Divide through by the lowest of the moles
You'll have the ratio of Carbon Hydrogen and Oxygen to be
C2H3O
Given Molecular Mass=184.27
C2H3On=184.27
n(12x2 + 1x3 + 16) =184.27
Evaluating this... You'll have n=4.3
Pls check if you assigned the correct value to each element
Answer:
This involves negatively charged particles (electrons) jumping to positively charged objects. When you rub the balloons against the fabric they become negatively charged. They take some of the electrons from the fabric and leave them positively charged.
Explanation:
Negative charges attract to positive charges. If a balloon is not rubbed with the wool cloth, it has an equal amount of negative to positive charges, so it will attract to a rubbed balloon. When both balloons are rubbed with the wool cloth, the both receive negative charges, so they will repel each other.
Answer: Endothermic, 2.80 kJ
Explanation
Since this reaction absorbs heat, it is endothermic.
The energy absorbed per mole CO is 2.80 kJ and this reaction is already balanced. q= 2.80 kJ
Hope this helps:)