There is no acceleration in the horizontal direction (just g in the vertical), so we can use v = d/t, where v is velocity, d is distance and t is time. We can solve for time like so: t = d/v, we can plug in numbers (v is 39.1m/s completely in the horizontal direction, so no need to break it down with sin's and cos's, just plug it in) and we get t = (16.6m)/(39.1 m/s) = 0.42 s. Keep in mind it wouldn't fall far enough vertically to hit home plate (though we don't know the ball's initial height anyway), but would be in the air just above it. Cheers!
Answer:
The woman's distance from the right end is 1.6m = (8-6.4)m.
The principles of moments about a point or axis running through a point and summation of forces have been used to calculate the required variable.
Principle of moments: the sun of clockwise moments must be equal to the sun of anticlockwise moments.
Also the sun of upward forces must be equal to the sun of downward forces.
Theses are the conditions for static equilibrium.
Explanation:
The step by step solution can be found in the attachment below.
Thank you for reading this solution and I hope it is helpful to you.
Answer: A. a basketball being shot toward the basket
Explanation: The definition of projectile motion is the motion of an object thrown or projected into the air, subject to only the acceleration of gravity. So, the basketball is the object being thrown and the person throwing the ball is aiming it to go into the basket making that the path of trajectory. Hope that makes sense and helps!
Answer:
25.59 m/s²
Explanation:
Using the formula for the force of static friction:
--- (1)
where;
static friction force
coefficient of static friction
N = normal force
Also, recall that:
F = mass × acceleration
Similarly, N = mg
here, due to min. acceleration of the car;
From equation (1)
However, there is a need to balance the frictional force by using the force due to the car's acceleration between the quarter and the wall of the rocket.
Thus,
where;
and g = 9.8 m/s²