Answer:
Time spent on the greenway road = 4.5 hours
Time spent on the 2 lane road = 1.5 hours
Explanation:
The distance of the trip is 360 miles and the initial speed of the car is 62 miles/hr and after the road became 2 lane highway the car slowed to 54 miles/hr.
Let us divide the trip into two
Greenway
speed = distance/time
speed = 62 mph
time = a
distance = speed × time
distance = 62a
2 lane highway
speed = distance/time
speed = 54 mph
time = b
distance = speed × time
distance = 54b
Total distance
62a + 54b = 360......................(i)
Total time
a + b = 6..............................(ii)
a = 6-b
insert a in equation (i)
62(6-b) + 54b = 360
372 - 62b + 54b = 360
-8b = 360-372
-8b = - 12
b = 12/8
b = 1.5
from equation (ii)
a + 1.5 = 6
a = 6 - 1.5
a = 4.5
Answer:
Initial concentration of the reactant = 3.34 × 10^(-2)M
Explanation:
Rate of reaction = 2.30×10−4 M/s,
Time of reaction = 80s
Final concentration = 1.50×10−2 M
Initial concentration = Rate of reaction × Time of reaction + Final concentration
= 2.30×10−4 M/s × 80s + 1.50×10−2 M = 3.34 × 10^(-2)M
Initial concentration = 3.34 × 10^(-2)M
Answer:
In a tuning fork, two basic qualities of sound are considered, they are
1) The pitch of the waveform: This pitch depends on the frequency of the wave generated by hitting the tuning fork.
2) The loudness of the waveform: This loudness depends on the intensity of the wave generated by hitting the tuning fork.
Hitting the tuning fork harder will make it vibrate faster, increasing the number of vibrations per second. The number of vibration per second is proportional to the frequency, so hitting the tuning fork harder increase the frequency. From the explanation on the frequency above, we can say that by increasing the frequency the pitch of the tuning fork also increases.
Also, hitting the tuning fork harder also increases the intensity of the wave generated, since the fork now vibrates faster. This increases the loudness of the tuning fork.
Answer:
0.00098 N
Explanation:
The weight of an object is given by:

where
m is the mass of the object
g is the gravitational acceleration on the planet
In this problem, we have:
is the mass of the honeybee
is the acceleration due to gravity
Substituting into the equation, we find:
