Answer:
high schools community of college students who is looking my friend you my friend and maddie intro high college football of community College program maddie I work peen and caty high schools community College program g2
Answer:
the packing efficiency is 52.36%
Explanation:
Given the data in the question;
simple cubic unit cell that contains one atom with a metallic radius of 175 pm;
we know that;
Edge length of Simple cubic (a) is related to radius of atom (r) as follows;
a = 2r
since radius r = 175 pm
we substitute
a = 2 × 175 pm
a = 350 pm
Now we get the volume unit;
Volume of unit cell = a³ = ( 350 pm ) = 42875000 pm³
Next we get Volume of sphere;
Volume of Sphere =
πr³
Volume occupied by 1 atom =
× π × ( 175 pm )³
=
× π × 5359375 pm³
= 22449297.5 pm³
Now, the packing efficiency = ( Volume occupied by 1 atom / Volume of unit cell ) × 100
we substitute;
packing efficiency = ( 22449297.5 pm³ / 42875000 pm³ ) × 100
= 0.523598 × 100
= 52.36%
Therefore, the packing efficiency is 52.36%
This is what is normally termed a single replacement reaction, although don't hold me to that. It could have changed to something more modern.
The higher the energy density of a fuel, the greater the amount of energy it has stored.
<h3>What is the energy density?</h3>
The energy density of a fuel is defined as the amount of energy it possesses per unit volume or per unit weight.
<h3>Characteristics of the energy density</h3>
- It is the amount of energy accumulated in an energy vector per unit volume or mass.
- In general, higher density energy sources and carriers are preferable, as many end uses require concentration of such energy.
- The packaging of energy in liquid hydrocarbons is the one with the highest energy density, that is, the highest energy per volume unit, hence its high use in the transportation sector.
Therefore, we can conclude that in general, fuels, especially low molecular weight fuels, have high energy densities.
Learn more about the energy density here: brainly.com/question/2165966
I think it’s always gonna be 2