1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRISSAK [1]
1 year ago
6

Nec ________ covers selection of time-delay fuses for motor- overload protection.

Engineering
1 answer:
Murljashka [212]1 year ago
6 0

Nec Article 430 covers selection of time-delay fuses for motor- overload protection.

<h3>What article in the NEC covers motor overloads?</h3>

Article 430 that is found in  National Electrical Code (NEC) is known to be state as “Motors, Motor Circuits and Controllers.” .

Note that the article tells that it covers areas such as motors, motor branch-circuit as well as feeder conductors, motor branch-circuit and others.

Therefore, Nec Article 430 covers selection of time-delay fuses for motor- overload protection.

Learn more about motor- overload from

brainly.com/question/20738481

#SPJ1

You might be interested in
A 5-mm-thick stainless steel strip (k = 21 W/m•K, rho = 8000 kg/m3, and cp = 570 J/kg•K) is being heat treated as it moves throu
Drupady [299]

Answer:

The temperature of the strip as it exits the furnace is 819.15 °C

Explanation:

The characteristic length of the strip is given by;

L_c = \frac{V}{A} = \frac{LA}{2A} = \frac{5*10^{-3}}{2} = 0.0025 \ m

The Biot number is given as;

B_i = \frac{h L_c}{k}\\\\B_i = \frac{80*0.0025}{21} \\\\B_i = 0.00952

B_i < 0.1,  thus apply lumped system approximation to determine the constant time for the process;

\tau = \frac{\rho C_p V}{hA_s} = \frac{\rho C_p L_c}{h}\\\\\tau = \frac{8000* 570* 0.0025}{80}\\\\\tau = 142.5 s

The time for the heating process is given as;

t = \frac{d}{V} \\\\t = \frac{3 \ m}{0.01 \ m/s} = 300 s

Apply the lumped system approximation relation to determine the temperature of the strip as it exits the furnace;

T(t) = T_{ \infty} + (T_i -T_{\infty})e^{-t/ \tau}\\\\T(t) = 930 + (20 -930)e^{-300/ 142.5}\\\\T(t) = 930 + (-110.85)\\\\T_{(t)} = 819.15 \ ^0 C

Therefore, the temperature of the strip as it exits the furnace is 819.15 °C

5 0
3 years ago
In your Reader/Writer Notebook, write a short first-person narrative from the perspective of the bank clerk, describing her phys
guajiro [1.7K]
BAHHHHAHHH HOFHOFYOCIGC
5 0
3 years ago
To put out a class D metal fire, you must _______ the fire.
gladu [14]

To put out a class D metal fire, you must smother the fire and eliminate the oxygen element in the fire.

<h3>What is a Class D fire?</h3>

A class D fire is a type of fire that cannot be extinguished by water. This is because adding water to it reacts with other elements in the fire intensifying the fire even more.

Smothering in this context involves adding a solution like carbon dioxide (CO2) into the fire, this results in a reduction of oxygen in the atmosphere surrounding the class D fire.

By so doing, smothering the fire eliminates the oxygen element in the fire, thereby extinguishing the fire.

You can learn more about extinguishing fires here https://brainly.in/question/760550

#SPJ1

7 0
2 years ago
Wireless technology has made communicating
emmainna [20.7K]

Answer:

Taking as a basis of calculation 100 mol of gas leaving the conversion reactor, draw andcompletely label a flowchart of this process. Then calculate the moles of fresh methanol feed,formaldehyde product solution, recycled methanol, and absorber off-gas, the kg of steamgenerated in the waste-heat boiler, and the kg of cooling water fed to the heat exchangerbetween the waste-heat boiler and the absorber. Finally, calculate the heat (kJ) that must beremoved in the distillation column overhead condenser, assuming that methanol enters as asaturated vapor at 1 atm and leaves as a saturated liquid at the same pressure.

1

SEE ANSWER

Explanation:

6 0
3 years ago
A charge of +2.00 μC is at the origin and a charge of –3.00 μC is on the y axis at y = 40.0 cm . (a) What is the potential at po
Nimfa-mama [501]

a) Potential in A: -2700 V

b) Potential difference: -26,800 V

c) Work: 4.3\cdot 10^{-15} J

Explanation:

a)

The electric potential at a distance r from a single-point charge is given by:

V(r)=\frac{kq}{r}

where

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have a system of two charges, so the total potential at a certain point will be given by the algebraic sum of the two potentials.

Charge 1 is

q_1=+2.00\mu C=+2.00\cdot 10^{-6}C

and is located at the origin (x=0, y=0)

Charge 2 is

q_2=-3.00 \mu C=-3.00\cdot 10^{-6}C

and is located at (x=0, y = 0.40 m)

Point A is located at (x = 0.40 m, y = 0)

The distance of point A from charge 1 is

r_{1A}=0.40 m

So the potential due to charge 2 is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.40}=+4.50\cdot 10^4 V

The distance of point A from charge 2 is

r_{2A}=\sqrt{0.40^2+0.40^2}=0.566 m

So the potential due to charge 1 is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.566}=-4.77\cdot 10^4 V

Therefore, the net potential at point A is

V_A=V_1+V_2=+4.50\cdot 10^4 - 4.77\cdot 10^4=-2700 V

b)

Here we have to calculate the net potential at point B, located at

(x = 0.40 m, y = 0.30 m)

The distance of charge 1 from point B is

r_{1B}=\sqrt{(0.40)^2+(0.30)^2}=0.50 m

So the potential due to charge 1 at point B is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.50}=+3.60\cdot 10^4 V

The distance of charge 2 from point B is

r_{2B}=\sqrt{(0.40)^2+(0.40-0.30)^2}=0.412 m

So the potential due to charge 2 at point B is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.412}=-6.55\cdot 10^4 V

Therefore, the net potential at point B is

V_B=V_1+V_2=+3.60\cdot 10^4 -6.55\cdot 10^4 = -29,500 V

So the potential difference is

V_B-V_A=-29,500 V-(-2700 V)=-26,800 V

c)

The work required to move a charged particle across a potential difference is equal to its change of electric potential energy, and it is given by

W=q\Delta V

where

q is the charge of the particle

\Delta V is the potential difference

In this problem, we have:

q=-1.6\cdot 10^{-19}C is the charge of the electron

\Delta V=-26,800 V is the potential difference

Therefore, the work required on the electron is

W=(-1.6\cdot 10^{-19})(-26,800)=4.3\cdot 10^{-15} J

4 0
3 years ago
Other questions:
  • Consider the series solution, Equation 5.42, for the plane wall with convection. Calculate midplane (x* = 0) and surface (x* = 1
    5·1 answer
  • First step in solving frames in to solve support reactions when looking at the frame as a whole. a)- True b)-False
    9·1 answer
  • Using the data from the table, what is P(3)?!
    9·1 answer
  • Write Python expressions using s1, s2, and s3 and operators and * that evaluate to: (a) 'ant bat cod'
    14·1 answer
  • What was the first roblox player A.bob B.roblox C.builderman
    5·2 answers
  • The value 100 MW is equivalent to (a) 100×10^6 w (b) 100 x 10^-6 w (c) 100 x 10^-3 w (d) 100 x 10^3 w
    14·1 answer
  • Technician a says that diesel engines can produce more power because air in fuel or not mix during the intake stroke. Technician
    9·1 answer
  • Electricians will sometimes call ______ "disconnects" or a "disconnecting means."
    15·1 answer
  • Andy is a carpenter and wants to make various articles using engineered wood. Which of these wood types can he use?
    8·2 answers
  • What is the condition for maximum efficiency in a DC motor?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!