Answer:
%Program prompts user to input vector
v = input('Enter the input vector: ');
%Program shows the value that user entered
fprintf('The input vector:\n ')
disp(v)
%Loop for checking all array elements
for i = 1 : length(v)
%check if the element is a positive number
if v(i) > 0
%double the element
v(i) = v(i) * 2;
%else the element is negative number.
else
%triple the element
v(i) = v(i) * 3;
end
end
%display the modified vector
fprintf('The modified vector:\n ')
disp(v)
The advantages that can be associated to
drawings and symbols over written descriptions in engineering design and prototyping process are;
Communicate design ideas as well as technical information to engineers.
Symbols and drawings can be universal which means it is easy to interpret any where by professionals.
- An engineering drawing serves as complex dimensional object and symbol use by engineer to communicate.
- Drawings and symbols makes it easier to communicate design ideas and technical information to engineers and and how the process will go.
Therefore, drawings and symbols is universal to all engineer unlike written one.
Learn more at:
brainly.com/question/20925313?referrer=searchResults
Answer:what are you trying to say
Explanation:
Answer:
Following are the proving to this question:
Explanation:
using the energy equation for entry and exit value
:
![\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0 = \frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g}](https://tex.z-dn.net/?f=%5Cto%20%5Cfrac%7Bp_o%7D%7By%7D%20%2B%5Cfrac%7BV%5E%7B2%7D_%7Bo%7D%7D%7B2g%7D%2BZ_0%20%20%3D%20%5Cfrac%7Bp_1%7D%7By%7D%20%2B%5Cfrac%7BV%5E%7B2%7D_%7B1%7D%7D%7B2g%7D%2BZ_1%2B%20f%20%5Cfrac%7Bl%7D%7BD%7D%5Cfrac%7BV%5E%7B2%7D%7D%7B2g%7D)
where
![= (\frac{1}{(2f (\frac{l}{D} ))^{\frac{1}{4}}})^4\ V^{2}_{1}\\\\](https://tex.z-dn.net/?f=%3D%20%28%5Cfrac%7B1%7D%7B%282f%20%28%5Cfrac%7Bl%7D%7BD%7D%20%29%29%5E%7B%5Cfrac%7B1%7D%7B4%7D%7D%7D%29%5E4%5C%20%20V%5E%7B2%7D_%7B1%7D%5C%5C%5C%5C)
![= \frac{1}{(2f (\frac{l}{D}) )} \ V^{2}_{1}\\](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B1%7D%7B%282f%20%28%5Cfrac%7Bl%7D%7BD%7D%29%20%20%29%7D%20%5C%20%20V%5E%7B2%7D_%7B1%7D%5C%5C)
![\to \frac{p_o}{y} +\frac{V^{2}_{o}}{2g}+Z_0 =\frac{p_1}{y} +\frac{V^{2}_{1}}{2g}+Z_1+ f \frac{l}{D}\frac{V^{2}}{2g} \\\\](https://tex.z-dn.net/?f=%5Cto%20%5Cfrac%7Bp_o%7D%7By%7D%20%2B%5Cfrac%7BV%5E%7B2%7D_%7Bo%7D%7D%7B2g%7D%2BZ_0%20%20%3D%5Cfrac%7Bp_1%7D%7By%7D%20%2B%5Cfrac%7BV%5E%7B2%7D_%7B1%7D%7D%7B2g%7D%2BZ_1%2B%20f%20%5Cfrac%7Bl%7D%7BD%7D%5Cfrac%7BV%5E%7B2%7D%7D%7B2g%7D%20%5C%5C%5C%5C)
![\to 0+0+Z_0 = 0 +\frac{V^{2}_{1} }{2g} +Z_1+ f \frac{l}{D} \frac{\frac{1}{(2f(\frac{l}{D}))}\ V^{2}_{1}}{2g} \\\\\to Z_0 -Z_1 = +\frac{V^{2}_{1}}{2g} \ (1+f\frac{l}{D}\frac{1}{(2f(\frac{l}{D}) )} ) \\\\\to H= \frac{V^{2}_{1}}{2g} (\frac{3}{2}) \\\\\to \frac{V^{2}_{1}}{2g} = H(\frac{3}{2})](https://tex.z-dn.net/?f=%5Cto%200%2B0%2BZ_0%20%3D%200%20%20%2B%5Cfrac%7BV%5E%7B2%7D_%7B1%7D%20%7D%7B2g%7D%20%2BZ_1%2B%20f%20%5Cfrac%7Bl%7D%7BD%7D%20%5Cfrac%7B%5Cfrac%7B1%7D%7B%282f%28%5Cfrac%7Bl%7D%7BD%7D%29%29%7D%5C%20V%5E%7B2%7D_%7B1%7D%7D%7B2g%7D%20%20%20%5C%5C%5C%5C%5Cto%20Z_0%20-Z_1%20%3D%20%2B%5Cfrac%7BV%5E%7B2%7D_%7B1%7D%7D%7B2g%7D%20%5C%20%281%2Bf%5Cfrac%7Bl%7D%7BD%7D%5Cfrac%7B1%7D%7B%282f%28%5Cfrac%7Bl%7D%7BD%7D%29%20%29%7D%20%29%20%20%5C%5C%5C%5C%5Cto%20H%3D%20%5Cfrac%7BV%5E%7B2%7D_%7B1%7D%7D%7B2g%7D%20%28%5Cfrac%7B3%7D%7B2%7D%29%20%5C%5C%5C%5C%5Cto%20%20%5Cfrac%7BV%5E%7B2%7D_%7B1%7D%7D%7B2g%7D%20%3D%20H%28%5Cfrac%7B3%7D%7B2%7D%29)
L.H.S = R.H.S