1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gogolik [260]
3 years ago
11

A small pad subjected to a shearing force is deformed at the top of the pad 0.08 in. The height of the pad is 1.38 in. What is t

he shearing strain (rad) on the pad?
Engineering
1 answer:
Aleksandr-060686 [28]3 years ago
7 0

Answer:

The shear strain is 0.05797 rad.

Explanation:

Shear strain is the ratio of change in dimension along the shearing load direction to the height of the plate under application of shear load. Width of the plate remains same. Length of the plate slides under shear load.

Step1

Given:

Height of the pad is 1.38 in.

Deformation at the top of the pad is 0.08 in.

Calculation:

Step2

Shear strain is calculated as follows:

tan\phi=\frac{\bigtriangleup l}{h}

tan\phi=\frac{0.08}{1.38}

tan\phi= 0.05797

For small angle of \phi, tan\phi can take as\phi.

\phi = 0.05797 rad.

Thus, the shear strain is 0.05797 rad.

You might be interested in
1. In a series circuit the sum of all voltage drops produced by the loads in the circuit
GarryVolchara [31]

Answer:

ik the answer but I'm busy rn

5 0
2 years ago
Five kg of water is contained in a piston-cylinder assembly, initially at 5 bar and 240°C. The water is slowly heated at constan
Digiron [165]

Answer:

The final temperature of water is 381.39  °C.

Explanation:

Given that

Mass of water = 5 kg

Heat transfer at constant pressure Q = 2960 KJ

Initial temperature = 240 °C

We know that heat transfer at constant pressure given as follows

Q=mC_p\Delta T

We know that for water

C_p=4.187\ \frac{KJ}{kg.K}

Lets take final temperature of water is T

So

Q=mC_p\Delta T

2960=5\times 4.187(T-240)

T=381.39  °C

So the final temperature of water is 381.39  °C.

7 0
2 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
Please help i am give brainliest
Korolek [52]

Answer:

A C power is the answer

hope this helps

6 0
2 years ago
Read 2 more answers
What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 3 × 10-4
Vladimir [108]

Answer:

maximum stress is 2872.28 MPa

Explanation:

given data

radius of curvature = 3 × 10^{-4} mm

crack length = 5.5 × 10^{-2} mm

tensile stress = 150 MPa

to find out

maximum stress

solution

we know that  maximum stress formula that is express as

\sigma m = 2 ( \sigma o ) \sqrt{\frac{a}{\delta t}}     ......................1

here σo is applied stress and a is half of internal crack and t is radius of curvature of tip of internal crack

so put here all value in equation 1 we get

\sigma m = 2 ( \sigma o) \sqrt{\frac{a}{\delta t}}  

\sigma m = 2(150) \sqrt{ \frac{\frac{5.5*10^{-2}}{2}}{3*10^{-4}}}  

σm = 2872.28 MPa

so maximum stress is 2872.28 MPa

8 0
2 years ago
Other questions:
  • In this milestone we will create a Course class to represent a course and display its information on the screen. We will create
    9·1 answer
  • Convert 0.025 in into mm.
    11·2 answers
  • Compared to arc welding, which of the following statements are true about<br> gas welding?
    13·1 answer
  • Use the drop-down menus to choose the correct term or words to complete the statements.
    10·1 answer
  • One kilogram of water contained in a piston–cylinder assembly, initially saturated vapor at 460 kPa, is condensed at constant pr
    15·1 answer
  • A 10-mm steel drill rod was heat-treated and ground. The measured hardness was found to be 290 Brinell. Estimate the endurance s
    14·1 answer
  • Which of the following is NOT a true statement about construction drawings?
    5·1 answer
  • WHAT IS MEANT BY BJT AND FUNCTION OF BJT
    8·1 answer
  • How many times has the ITU-R revised the CCIR 601 international standard? A. four B. five C. six D. seven
    8·1 answer
  • Water is pumped from a lake to a storage tank 18 m above at a rate of 70 L/s while consuming 20.4 kW of electric power. Disregar
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!