Answer:
Total distance = 700 m
Displacement = 500 m
Explanation:
Notice that Jed travelled a total of 3 x 100 m = 300 m in the North direction, and 300 m + 100 m = 400 m in the East direction. Therefore the total distance he travelled is: 300 + 400 = 700 m.
But the actual displacement is given by the Pythagorean theorem as the hypotenuse of a right angle triangle of legs 300 m and 400 m:
displacement = 
Sure, if the mortality (death) rate is even higher than the birth rate.
Answer:
Please see below as the answer is self-explanatory.
Explanation:
- We can take the initial velocity vector, which magnitude is a given (67 m/s) and project it along two directions perpendicular each other, which we choose horizontal (coincident with x-axis, positive to the right), and vertical (coincident with y-axis, positive upward).
- Both movements are independent each other, due to they are perpendicular.
- In the horizontal direction, assuming no other forces acting, once launched, the supply must keep the speed constant.
- Applying the definition of cosine of an angle, we can find the horizontal component of the initial velocity vector, as follows:

- Applying the definition of average velocity, since we know the horizontal distance to the target, we can find the time needed to travel this distance, as follows:

- In the vertical direction, once launched, the only influence on the supply is due to gravity, that accelerates it with a downward acceleration that we call g, which magnitude is 9.8 m/s2.
- Since g is constant (close to the Earth's surface), we can use the following kinematic equation in order to find the vertical displacement at the same time t that we found above, as follows:

- In this case, v₀y, is just the vertical component of the initial velocity, that we can find applying the definition of the sine of an angle, as follows:

- Replacing in (3) the values of t, g, and v₀y, we can find the vertical displacement at the time t, as follows:

- Since when the payload have traveled itself 400 m, it will be at a height of 53.5 m (higher than the target) we can conclude that the payload will be delivered safely to the drop site.
To solve this problem we will apply the concepts related to the conservation of momentum. By definition we know that the initial moment must be equivalent to the final moment of the two objects therefore


Here,
Mass of each object
Initial velocity of each object
= Final velocity of each object
Since the initial velocity relative to the metal tank is at rest, that velocity will be zero. And considering that in the end, the speed of the two bodies is the same, the equation would become

Rearranging to find the velocity,

Replacing we have that,


Therefore the velocity of the shark immediately after it swallows the tank is 
Sup cuz u only came back to ask a question cuz. sure cuz. here its cuz. that will be the answer cuz. So the answer could be cuz. Still thinking it might be cuz. Problably i still dont know cuz. Come back cuz. F u Cuz.
Im dead cuz
my finall answer was
Microwaves are a type of electromagnetic radiation, as are radio waves, ultraviolet radiation, X-rays and gamma-rays. Microwaves have a range of applications, including communications, radar and, perhaps best known by most people, cooking.Feb 8, 2018