Milliliters would be used to find the volume AKA amount of liquid
Answer:
To find the circumference (orbit) of an object, you use Pi x Diameter.
As you have the circumference of B, you divide it by Pi to get the Diameter.
So 120 divided by 3.141592654 = 38.2 minutes for the Diameter.
As' radius and Diameter will be 3x greater than B.
38.2 x 3 = 114.6
To get back to the orbital period, times 114.6 by Pi, and you will get 360 minutes
HOPE THIS HELPS AND PLS MARK AS BRAINLIEST
THNXX :)
Answer:
A)
= 1.44 kg m², B) moment of inertia must increase
Explanation:
The moment of inertia is defined by
I = ∫ r² dm
For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is
I = ½ m R²
A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is
I =
+ m D²
Let's apply these equations to our case
The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms
=
+ 2
= ½ M R²
The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body
M = 7/8 m total
M = 7/8 64
M = 56 kg
The mass of the arms is
m’= 1/8 m total
m’= 1/8 64
m’= 8 kg
As it has two arms the mass of each arm is half
m = ½ m ’
m = 4 kg
The arms are very thin, we will approximate them as a particle
= M D²
Let's write the equation
= ½ M R² + 2 (m D²)
Let's calculate
= ½ 56 0.20² + 2 4 0.20²
= 1.12 + 0.32
= 1.44 kg m²
b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase
Explanation:
Hole. Hole. Different notes can be played on the flute by blocking holes. ...
Drum skin. Drum skin. Hitting the bongo drum makes its tight elastic skin vibrate.
String. String. ...
Sound. hole. ...
Bow. Bow.