Answer:
the pressure at B is 527psf
Explanation:
Angular velocity, ω = v / r
ω = 20 /1.5
= 13.333 rad/s
Flow equation from point A to B
![P_A+rz_A-\frac{1}{2} Pr_A^2w^2=P_B+rz_B-\frac{1}{2} pr^2_Bw^2\\\\P_B = P_A + r(z_A-z_B)+\frac{1}{2} pw^2[(r_B^2)-(r_A)^2]\\\\P_B = [25 +(0.8+62.4)(0-1)+\frac{1}{2}(0.8\times1.94)\times(13.333)^2[2.5^2-1.5^2] ]\\\\P_B = 25 - 49.92+551.79\\\\P_B = 526.87psf\\\approx527psf](https://tex.z-dn.net/?f=P_A%2Brz_A-%5Cfrac%7B1%7D%7B2%7D%20Pr_A%5E2w%5E2%3DP_B%2Brz_B-%5Cfrac%7B1%7D%7B2%7D%20pr%5E2_Bw%5E2%5C%5C%5C%5CP_B%20%3D%20P_A%20%2B%20r%28z_A-z_B%29%2B%5Cfrac%7B1%7D%7B2%7D%20pw%5E2%5B%28r_B%5E2%29-%28r_A%29%5E2%5D%5C%5C%5C%5CP_B%20%3D%20%5B25%20%2B%280.8%2B62.4%29%280-1%29%2B%5Cfrac%7B1%7D%7B2%7D%280.8%5Ctimes1.94%29%5Ctimes%2813.333%29%5E2%5B2.5%5E2-1.5%5E2%5D%20%20%5D%5C%5C%5C%5CP_B%20%3D%2025%20-%2049.92%2B551.79%5C%5C%5C%5CP_B%20%3D%20526.87psf%5C%5C%5Capprox527psf)
the pressure at B is 527psf
Answer:
Explanation:
Electric field between plates of a parallel plate capacitor is uniform .
In a uniform electric field , relation between electric field and potential gradient is as follows
electric field = potential gradient [ E = - dV / dl ]
in the given case ,
dV = 51 V ,
dl = 4 cm
= 4 x 10⁻² m
E = 51 / 4 x 10⁻²
= 12.75 x 10² V / m
= 1275 V / m
Answer:
B
Explanation:
Spectroscopy measures electromagnetic radiation.
Answer:
I think it's B
Explanation:
Because hese receptors are found in muscles, tendons, and joints.
Answer:
The correct answer is A
Explanation:
The question requires as well the attached image, so please see that below.
Coulomb's Law.
The electrical force can be understood by remembering Coulomb's Law, that describes the electrostatic force between two charged particles. If the particles have charges
and
, are separated by a distance r and are at rest relative to each other, then its electrostatic force magnitude on particle 1 due particle 2 is given by:

Thus if we decrease the distance by half we have

So we get

Replacing we get

We can then multiply both numerator and denominator by 4 to get

So we have

Thus if we decrease the distance by half we get four times the force.
Then we can replace the second condition

So we get

which give us

Thus doubling one of the charges doubles the force.
So the answer is A.