Answer:
Each principal energy level above the first contains one s orbital and three p orbitals. A set of three p orbitals, called the p sublevel, can hold a maximum of six electrons. Therefore, the second level can contain a maximum of eight electrons - that is, two in the s orbital and 6 in the three p orbitals.
Explanation:
Answer:
gde
Explanation:
We are attempting to synthesize 1-butyne from 1-chlorobutane. Since 1-chlorobutane is a primary alkyl halide, 1-butene is formed when 1-chlorobutane is reacted with a bulky base such as t -BuOK or t -BuOH in presence of strong heat. This is an E2 reaction.
Secondly, the 1-butene is reacted with bromine in carbon tetrachloride. The vicinal dihalide (1,2-dibromobutane) is formed. This can now undergo further elimination reactions in the presence of sodamide and strong heat to yield 1-butyne which is the desired product. These reactions involve the elimination of the first HBr molecule to give an alkenyl bromide. A second elimination now gives the terminal alkyne.
Answer: The equilibrium constant for the overall reaction is 
Explanation:
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios.
a) 
![K_a=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D)
b) 
![K_b=\frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_b%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
For overall reaction on adding a and b we get c
c) 
![K_c=\frac{[PCl_5]}{[Cl_2]^\frac{5}{2}}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5E%5Cfrac%7B5%7D%7B2%7D%7D)
![K_c=K_a\times K_b=\frac{[PCl_3]}{[Cl_2]^{\frac{3}{2}}}\times \frac{[PCl_5]}{[Cl_2]\times [PCl_3]}](https://tex.z-dn.net/?f=K_c%3DK_a%5Ctimes%20K_b%3D%5Cfrac%7B%5BPCl_3%5D%7D%7B%5BCl_2%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%7D%7D%5Ctimes%20%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BCl_2%5D%5Ctimes%20%5BPCl_3%5D%7D)
The equilibrium constant for the overall reaction is 
You have to find the stoichiometric ratio between AlCl₃ and BaCl₂. The common element between them is Cl. So, the ratio of Cl in BaCl₂ to AlCl₃ is 2/3. The molar mass of AlCl₃ is 133.34 g/mol. The solution is as follows:
Mass of AlCl₃ = (6 mol BaCl₂)(2 mol Cl/1 mol BaCl₂)(1 mol AlCl₃/3 mol Cl)(133.34 g/mol) = 533.36 g AlCl₃