Answer:
- <u><em>butylphenyl ether.</em></u>
Explanation:
The formula of the compound is:
- CH₃ - CH₂ - CH₂ - CH₂ - O - C₆H₅
1. The functional group is of the kind R - O - R', i.e. two alkyl groups each attached to one end of the oxygen atom. That means that the compound is an ether.
2. One group attached to the oxygen group is CH₃ - CH₂ - CH₂ - CH₂ - which has 4 carbons and is named butyl group.
3. The other group attached to the oxygen atom is C₆H₅ - which is derived from ciclohexane as is known as phenyl group.
4. Using the rule of naming the subtituents in alphabetical order, you name butyl first and phenyl second, so it is <u><em>butylphenyl ether.</em></u>
Answer:
Calcium bromide
Explanation:
When naming compounds, the use of prefixes depend on the type of bond made. In this case, calcium and bromine form a ionic bond because calcium is a metal and bromine is a non-metal.
Ionic bonds are not named using prefixes. So no matter how many atoms there are, you will simply write the name of the element for the first element.
For the second element, you name it as well, but only use the root name and end it with -ide.
Answer:
C
Explanation:
burning gasoline i think pls can i have brainliest if right!
2-ethyl-4,4 -dimethyl hex-1-ene.
Answer:
36 KJ of heat are released when 1.0 mole of HBr is formed.
Explanation:
<em>By Hess law,</em>
<em>The heat of any reaction ΔH for a specific reaction is equal to the sum of the heats of reaction for any set of reactions which in sum are equivalent to the overall reaction:</em>
H 2 (g) + Br 2 (g) → 2HBr (g) ΔH = -72 KJ
This is the energy released when 2 moles of HBr is formed from one mole each of H2 and Br2.
Therefore, Heat released for the formation of 1 mol HBr would be half of this.
Hence,
ΔHreq = -36 kJ
36 KJ of heat are released when 1.0 mole of HBr is formed.