Answer:
-10 m/s²
Explanation:
a = Δv / Δt
a = (20 m/s − 50 m/s) / 3 s
a = -10 m/s²
Since the basketball and the tennis ball both travel to the same direction relative to the ground, the velocity of the basketball relative to the tennis ball is therefore the difference of their velocities.
0.5 m/s - 0.25 m/s = 0.25 m/s
Thus, the basketball travel for 0.25 m/s relative to the tennis ball.
Answer: In this lab we wanted to know how motion can be described. So the hypothesis is if the starting height of a sloped racetrack is increased, then the speed at which a toy car travels along the track will increase because the toy car will have a greater acceleration. My prediction is that cars travel faster on higher tracts. So the heighten the track was intentionally manipulated. So it is the independent variable the speed of the car is the dependent variable. The speed at the first quarter checkpoint is 1.09 m/s. The speed at the second quarter checkpoint is 1.95 m/s. The speed at the third quarter checkpoint is 2.373.36 m/s. The speed at the finish line is 2.803.00 m/s. The average speed increases as the height increases.
The cars on the higher track travel farther than the cars on the lower track, in the same time.
This means that the cars on the higher track have a greater average speed than those on the lower track. This is demonstrated by the
slope of the higher track line being greater than the slope of the lower track line.
Explanation: put it in notes then send it to files to compress it to submit it.
If one of two interacting charges is doubled, the force between the charges will double.
Explanation:
The force between two charges is given by Coulomb's law

K=constant= 9 x 10⁹ N m²/C²
q1= charge on first particle
q2= charge on second particle
r= distance between the two charges
Now if the first charge is doubled,
we get 
F'= 2 F
Thus the force gets doubled.
Answer:
Time, t = 12 minutes
Explanation:
It is given that,
A cyclist rides 16.0 km east, then 8.0 km west, then 8.0 km east, then 32.0 km west, and finally 11.2 km east. Let west direction is negative and east direction is positive. The displacement of the cyclist is :

d = 4800 m
Let us assumed that the average speed of the cyclist is, v = 24 km/h = 6.66667 m/s
Let t is the time taken by the cyclist to complete the trip. The velocity of an object is given by :



t = 719.99 seconds
t = 720 seconds
or
t = 12 minutes
So, the time taken by the cyclist to complete the trip is 12 minutes. Yes, the time taken by the cyclist to complete the trip is reasonable. Hence, this is the required solution.