Answer:
Approximately .
Explanation:
Cathode is where reduction takes place and anode is where oxidation takes place. The potential of a electrochemical reaction () is equal to
.
There are two half-reactions in this question. and . Either could be the cathode (while the other acts as the anode.) However, for the reaction to be spontaneous, the value of should be positive.
In this case, is positive only if is the reaction takes place at the cathode. The net reaction would be
.
Its cell potential would be equal to .
The maximum amount of electrical energy possible (under standard conditions) is equal to the free energy of this reaction:
,
where
- is the number moles of electrons transferred for each mole of the reaction. In this case the value of is as in the half-reactions.
- is Faraday's Constant (approximately .)
.
Answer:
Objective: It is raining. Subjective: I love the rain!
Explanation:
Anything objective sticks to the facts, but anything subjective has feelings. Objective and subjective are opposites.
(Hope this helps can I pls have brainlist (crown)☺️)
The metric unit of force is Newton or N. The Newton unit is also equal
to kilogram per meter per second squared. The Newton name came from the late
physicist Isaac Newton. It is also based on the second law of motion.
Answer:
Explanation:
There are two types of collision.
(a) Elastic collision: When there is no loss of energy during the collision, then the collision is said to be elastic collision.
In case of elastic collision, the momentum is conserved, the kinetic energy is conserved and all the forces are conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The kinetic energy of the system before collision = the kinetic energy after the collision
(b) Inelastic collision: When there is some loss of energy during the collision, then the collision is said to be inelastic collision.
In case of inelastic collision, the momentum is conserved, the kinetic energy is not conserved, the total mechanical energy is conserved and all the forces or some of the forces are non conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The total mechanical energy of the system before collision = total mechanical of the system after the collision