As we sit in a chair, Action force will be only in one direction and that direction would be downward only.
In short, Your Answer would be Option A
Hope this helps!
Answer:
20,850 N
Explanation:
We can solve the problem by using second Newton's Law:

where
F is the force
m is the mass
a is the acceleration
In this problem, we have:
m = 70 kg is the mass
is the acceleration (which is negative, because it is a deceleration)
So, we can use the equation above to find the force:

and the negative sign simply means that the force is in the opposite direction to the motion.
Answer:
AM has longer wavelength
Explanation:
The relation between the wavelength and teh frequency is given by
v = f x λ
Where, f is the frequency and λ be the wavelength.
It shows that the wavelength is inversely proportional to the frequency.
So, higher the frequency, smaller be the wavelength.
So, FM has high frequency than AM, thus, FM has lower wavelength as compared to AM.
Answer:
Explanation:
Applied force, F = 18 N
Coefficient of static friction, μs = 0.4
Coefficient of kinetic friction, μs = 0.3
θ = 27°
Let N be the normal reaction of the wall acting on the block and m be the mass of block.
Resolve the components of force F.
As the block is in the horizontal equilibrium, so
F Cos 27° = N
N = 18 Cos 27° = 16.04 N
As the block does not slide so it means that the syatic friction force acting on the block balances the downwards forces acting on the block .
The force of static friction is μs x N = 0.4 x 16.04 = 6.42 N .... (1)
The vertically downward force acting on the block is mg - F Sin 27°
= mg - 18 Sin 27° = mg - 8.172 ... (2)
Now by equating the forces from equation (1) and (2), we get
mg - 8.172 = 6.42
mg = 14.592
m x 9.8 = 14.592
m = 1.49 kg
Thus, the mass of block is 1.5 kg.