Answer:
The volume will be 568.89 mL.
Explanation:
Boyle's law says that "The volume occupied by a given gaseous mass at constant temperature is inversely proportional to pressure"
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Gay-Lussac's law indicates that when there is a constant volume, as the temperature increases, the pressure of the gas increases. And when the temperature is decreased, the pressure of the gas decreases. That is, the pressure of the gas is directly proportional to its temperature. Gay-Lussac's law can be expressed mathematically as follows:
Where P = pressure, T = temperature, K = Constant
Finally, Charles's law indicates that as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. In summary, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the quotient that exists between the volume and the temperature will always have the same value:
Combined law equation is the combination of three gas laws called Boyle's, Charlie's and Gay-Lusac's law:

Studying an initial state 1 and a final state 2, it is fulfilled:

In this case:
- P1= 960 mmHg
- V1= 550 mL
- T1= 200 C= 473 K (being 0 C=273 K)
- P2= 830 mmHg
- V2= ?
- T2= 150 C= 423 K
Replacing:

Solving:

V2= 568.9 mL
<u><em>The volume will be 568.89 mL.</em></u>
Analyzing a biomolecule X, a scientist verifies that it is made up of Carbon, Hydrogen, Oxygen and Nitrogen, in addition to releasing water when it joins with other similar molecules to form polymers. Considering these antecedents, it can be inferred that biomolecule X corresponds to: A Steroids B fatty acid C nucleotide D amino acid E monosaccharide (for people who dont speak spanish)
ok you answer is probably A
if wrong C maybe
~hope~
When cool, dense air from over the water flows inland, it's called a sea breeze.
God bless!
Answer:
A) 7.9 x 10⁶ inches
B) 1004 g
C) 2.8 x 10³ inches/ min
D) 1.2 x 10⁻⁴ mm
Explanation:
A) Since 39.37 inches = 1 m, you can convert meters to inches by multiplying by the conversion factor (39.37 inches / 1 m).
Notice that if 39.37 inches = 1 m then 39.37 inches / 1 m = 1. That means that when you multiply by a conversion factor, you are only changing units since it is the same as multiplying by 1 :
2.0 x 10⁵ m * (39.37 inches / 1 m) = 7.9 x 10⁶ inches
B) Conversion factors : (2.205 pounds / 1 kg) and (453.59 g / 1 pound), because 2.205 pounds = 1 kg and 1 pound = 453.59 g. Then:
1.004 kg * ( 2.205 pounds / 1 kg) * ( 453.59 g / 1 pound) = 1004 g
C) Conversion factor: (39.37 inches / 1 m) and (60 s / 1 min)
1.2 m/s * (39.37 inches / 1 m) * ( 60 s / 1 min) = 2.8 x 10³ inches/ min
D)Converison factor ( 1 mm / 1 x 10⁶ nm):
120 nm (1 mm / 1 x 10⁶ nm) = 1.2 x 10⁻⁴ mm
Answer:
The Bowen's reaction series describes how minerals form in sequential order, forming at higher temperature to a lower temperature. There are two branches of crystallization, one is the continuous branch that is on the right and the other is the discontinuous branch that is on the left.
The minerals that are at the top of the Bowen's reaction series forms at a higher temperature.
In the discontinuous branch, the first mineral to crystallize from the melt is Olivine that forms at a higher temperature of about 1400°C. After crystallization, some melt remains and undergoes fractional crystallization leading to the formation of Pyroxene. Again, with the remaining melt, it reacts and forms Amphibole, followed by Biotite (mica).
In the continuous branch, the first minerals to form are the calcium-rich minerals and successively forms sodium-rich minerals. These minerals that form at a higher temperature are basic in nature and gradually change into acidic minerals.
From both the branches, it commonly forms the mineral Potassium feldspar. After this, the remaining melt combines with the magma and forms Muscovite (Mica), and at a temperature of about 650°C, it forms a more resistant and stable mineral known as the Quartz.