Option C:
![$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Solution:
Given expression is
![$\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Note: ![\sqrt[3]{125}=\sqrt[3]{{5^3}} = 5](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B125%7D%3D%5Csqrt%5B3%5D%7B%7B5%5E3%7D%7D%20%20%3D%205)
To find the correct expression for the above simplified expression.
Option A: ![\frac{\sqrt[3]{4 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B5%7D)
5 can be written as
.
![$\frac{\sqrt[3]{4 x}}{5}=\frac{\sqrt[3]{4 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B4%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{4x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4x%7D%7B125%7D%20%7D)
It is not the given simplified expression.
Option B: ![\frac{\sqrt[3]{20 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B5%7D)
![$\frac{\sqrt[3]{20 x}}{5}=\frac{\sqrt[3]{20 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B20%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{20x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B20x%7D%7B125%7D%20%7D)
Cancel the common factor in both numerator and denominator.
![$=\sqrt[3]{\frac{4x}{25} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4x%7D%7B25%7D%20%7D)
It is not the given simplified expression.
Option C: ![\frac{\sqrt[3]{100 x}}{5}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D)
![$\frac{\sqrt[3]{100 x}}{5}=\frac{\sqrt[3]{100 x}}{\sqrt[3]{125} }](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B%5Csqrt%5B3%5D%7B125%7D%20%7D)
![$=\sqrt[3]{\frac{100x}{125} }](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B100x%7D%7B125%7D%20%7D)
Cancel the common factor in both numerator and denominator.
![$=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
It is the given simplified expression.
Option D: ![\frac{\sqrt[3]{100 x}}{125}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B125%7D)
![$\frac{\sqrt[3]{100 x}}{125}=\frac{\sqrt[3]{100 x}}{5^3}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B125%7D%3D%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%5E3%7D)
It is not the given simplified expression.
Hence Option C is the correct answer.
![$\frac{\sqrt[3]{100 x}}{5}=\sqrt[3]{\frac{4 x}{5}}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5Csqrt%5B3%5D%7B100%20x%7D%7D%7B5%7D%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B4%20x%7D%7B5%7D%7D)
Answer:
x-intercepts: (2,0), (4,0)
y-intercepts: (0,-8)
Explanation:
To find the x intercept(s), you must compute where y=0. So solve 0= -x^2 + 6x - 8. So, the x intercepts are: (2,0) and (4,0) since the solutions to the mentioned equation are x=2 and x=4. To find the y intercept(s) compute what is y when x=0. In this case, when x=0, y=-8. So the only y intercept is (0,-8).
1. If the line that we are searching for is perpendicular to the line y = -4x, this means that the gradient of our line and the gradient of the perpendicular line will multiply to give -1. Thus if we call the gradient of our line m, then:
m*(-4) = -1
-4m = -1
m = 1/4
2. Since we know that m = 1/4 and we have a point (2,6) on our line, we can use the formula y - y1 = m(x - x1) to find the equation of our line, where (x1, y1) is the coordinates of a point on the line. Thus:
y - y1 = m(x - x1)
y - 6 = (1/4)(x - 2)
y - 6 = (1/4)x - 2/4 (Expand (1/4)(x - 2))
y = (1/4)x - 1/2 + 6 (Simplify 2/4 and add 6 to each side)
y = (1/4)x + 11/2 (Evaluate -1/2 + 6)
Slope-intercept form is given by y = mx + c. As our equation is already in this form, there is nothing more to do. Thus, the answer is y = (1/4)x + 11/2