Answer:
The 3rd answer down.
Na²O (sodium oxide) will be a base when exposed to water H²O
Explanation:
Sodium Oxide Na²O, will become Sodium Hydroxide after being exposed to water (at 80% I believe).
The oxygen ion in Na²O has 2 extra electrons which makes it highly charged and very attractive to hydrogen ions. The attraction is so strong that when Na²O comes in contact with H²O, the O(-2) strips off a hydrogen from water, forming 2 x OH ions which of course are still strongly basic.
Answer:
Problem Details
The element europium exists in nature as two isotopes: 151Eu has a mass of 150.9196 amu, and 153Eu has a mass of 152.9209 amu. The average atomic mass of europium is 151.96 amu. Calculate the relative abundance of the two europium isotopes.
answer:
151Eu = 48%, 153Eu = 52%
Answer:
Option A.
Explanation:
1 mol of anything contains 6.02×10²³ particles.
We know that 1 mol of oxygen gas contains 2 moles of O.
1 mol of oxygen weighs 16 g/mol, the mass for 1 molecule of O.
By the way, the mass for 1 mol of O₂ may be:
Option A → 16 g/mol . 2 mol
32 g
Oyxgen is a dyatomic molecule, that's why we have 2 moles of O.
Another example can be:
1 mol of water (H₂O) contains 2 moles of H and 1 mol of O.
Answer:
C
Explanation:
This experiment by Rutherford involved the firing of alpha particles at gold foils. It is also. called the gold foil experiment.
He fired these alpha particles at different points. He noticed that at some points, there were deflections, while at some other points, there were no deflections. It is necessary to state that these alpha particles are positively charged. For there to be a deflection, there must have been a kind of repulsion between the gold foil and the alpha particles.
From the basic physics of like repels like, he knew for sure that there must be dense positive core in the atom that is causing the deflection of the alpha particles. This enabled him to come up with the theory that the atom contained a small dense positive core called the nucleus
The compound : C₄₀H₄₄N₄O
<h3>Further explanation</h3>
The empirical formula is the smallest comparison of atoms of compound =mole ratio of the components
The principle of determining empirical formula
• Determine the mass ratio of the constituent elements of the compound.
• Determine the mole ratio by dividing the percentage by the atomic mass
The mol ratio of composition : C : H : N : O
