Answer:
Double replacement is the answer
Answer:
3.75 L
Explanation:
We can solve this problem by using <em>Charles' law</em>, which states:
Where subscript 1 stands for initial volume and temperature and subscript 2 for final volume and temperature, meaning that in this case:
We <u>input the data</u>:
- 2.5 L * 300 K = V₂ * 200 K
And <u>solve for V₂</u>:
Answer:
The correct answer is the option c)He thought the mold had released a chemical that prevented the bacteria’s growth.
Explanation:
In the 1920s, Alexander Fleming was working in his laboratory at St. Mary's Hospital in London when, almost by accident, he discovered a naturally growing substance that could attack certain bacteria. In one of his experiments, Fleming observed that colonies of a bacterium had been depleted or removed by a mold that grew on the same Petri dish. He observed that the bacteria furthest from the fungus had grown to produce large-sized colonies, while the colonies closest to the fungus were tiny. He determined that mold made a substance that could dissolve bacteria. The fungus was penicilium chrysogenum and thus Fleming called this substance penicillin, by the name of the mold that produces it. Thus, after several years of experiments in 1930, Howard Florey and Ernest Chain developed at Oxford University the procedures to produce pure penicillin from the fungus that Fleming isolated. Thus penicillin could be concentrated by Florey and Chain, and in 1945 they shared with Fleming the Nobel Prize in Medicine.
Then, <u><em>the correct answer is the option c)He thought the mold had released a chemical that prevented the bacteria’s growth.</em></u>
Quick look: In its modern sense, epigenetics is the term used to describe inheritance by mechanisms other than through the DNA sequence of genes. It can apply to characteristics passed from a cell to its daughter cells in cell division and to traits of a whole organism
According to the second law of thermodynamics, heat energy released by an organism is released into the <span>environment and unusable. This energy is also known as entropy which is defined as the tendency of things to be dispersed and spontaneous. This means that entropy is always random and becomes unavailable energy.</span>