That's called "refraction".
1750 meters.
First, determine how long it takes for the kit to hit the ground. Distance over constant acceleration is:
d = 1/2 A T^2
where
d = distance
A = acceleration
T = time
Solving for T, gives
d = 1/2 A T^2
2d = A T^2
2d/A = T^2
sqrt(2d/A) = T
Substitute the known values and calculate.
sqrt(2d/A) = T
sqrt(2* 1500m / 9.8 m/s^2) = T
sqrt(3000m / 9.8 m/s^2) = T
sqrt(306.122449 s^2) = T
17.49635531 s = T
Rounding to 4 significant figures gives 17.50 seconds. Since it will take
17.50 seconds for the kit to hit the ground, the kit needs to be dropped 17.50
seconds before the plane goes overhead. So just simply multiply by the velocity.
17.50 s * 100 m/s = 1750 m
Answer:
Explanation:
The angular momentum of that same disk-sphere remains unchanged the very same way before and after the impact of the collision when the clay sphere adheres to the disk.
= constant.
The overall value of such moment of inertia is now altered when the clay spherical sticks. Due to the inclusion of the clay sphere, the moment of inertia will essentially rise. As a result of this increase, the angular speed w decreases in value.
Recall that:
The Kinetic energy is given by:

where;
is constant and w reduces;
As a result, just after the collision, the system's total kinetic energy decreases.