Answer:
0.37 m/s to the left
Explanation:
Momentum is conserved. Initial momentum = final momentum.
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
Initially, both the fisherman/boat and the package are at rest.
0 = m₁ v₁ + m₂ v₂
Plugging in values and solving:
0 = (82 kg + 112 kg) v + (15 kg) (4.8 m/s)
v = -0.37 m/s
The boat's velocity is 0.37 m/s to the left.
Answer:
Sound waves that we can hear have much longer wavelengths than do light waves. As a result, the diffraction of sound waves around a corner is noticeable and we can hear the sound in the “shadow region,” but the diffraction of light waves around a corner is not noticeable.
Explanation:
i hope that helps :)...<3
Answer: 1.044 E -17 A
Explanation:
L =1.50m
A = 0.380mm = 3.8E- 7
Resistivity p =1.70 E-8
R =pl/A
R = 1.70 E-8 × 1.5/ 3.8 E-7
R = 6.71 E-16 ohms
V = IR
0.700 = I × 6.71 E-16
I =1.044E-17 A
Answer:
0.001 s
Explanation:
The force applied on an object is equal to the rate of change of momentum of the object:

where
F is the force applied
is the change in momentum
is the time interval
The change in momentum can be written as

where
m is the mass
v is the final velocity
u is the initial velocity
So the original equation can be written as

In this problem:
m = 5 kg is the mass of the fist
u = 9 m/s is the initial velocity
v = 0 is the final velocity
F = -45,000 N is the force applied (negative because its direction is opposite to the motion)
Therefore, we can re-arrange the equation to solve for the time:

<span> The masses have no inertia about their own CM, and "the object" is the two masses. </span>
<span>1. Icm (at point A) = 2mr^2
hope this helps</span>