1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jasenka [17]
1 year ago
8

A small metal ball with a mass of m = 62.0 g is attached to a string of length l = 1.85 m. It is held at an angle of θ = 48.5° w

ith respect to the vertical.
The ball is then released. When the rope is vertical, the ball collides head-on and perfectly elastically with an identical ball originally at rest. This second ball flies off with a horizontal initial velocity from a height of h = 3.76 m, and then later it hits the ground. At what distance x will the ball land?

Physics
1 answer:
notka56 [123]1 year ago
6 0

The distance x will the ball land after flies off with a horizontal initial velocity  is 3.0635 m.

<h3>What is mechanical energy?</h3>

The mechanical energy is the sum of kinetic energy and the potential energy of an object at any instant of time.

M.E = KE +PE

A small metal ball with a mass of m = 62.0 g is attached to a string of length l = 1.85 m. It is held at an angle of θ = 48.5° with respect to the vertical.

The ball is then released. When the rope is vertical, the ball collides head-on and perfectly elastically with an identical ball originally at rest. This second ball flies off with a horizontal initial velocity from a height of h = 3.76 m, and then later it hits the ground.

The conservation of energy principle states that total mechanical energy remains conserved in all situations where there is no external force acting on the system.

Kinetic energy  = Potential energy

1/2 mv² =mgh₁

The velocity at the bottom, when the height h = 5m, is

v= √2gh₁...................(1)

The vertical height h₁ = l- lcosθ

h₁ = l- lcosθ

h₁ = 1.85 - 1.85cos48.5°

h₁ =0.6241 m

Putting the values in equation (1), we get

v = √2x 9.81 x0.6241

v = 3.499 m/s

The horizontal distance traveled is

x = vt

x = v x √2h/g

Plug the values, we get

x =  3.499 x √2x3.76 / 9.81

x = 3.0635 m

Thus, the horizontal distance ball travels is  3.0635 m.

Learn more about mechanical energy.

brainly.com/question/13552918

#SPJ1

You might be interested in
As shown in the figure below, a bullet is fired at and passes through a piece of target paper suspended by a massless string. Th
NikAS [45]

Answer:

M = 0.730*m

V = 0.663*v

Explanation:

Data Given:

v_{bullet, initial} = v\\v_{bullet, final} = 0.516*v\\v_{paper, initial} = 0\\v_{paper, final} = V\\mass_{bullet} = m\\mass_{paper} = M\\Loss Ek = 0.413 Ek

Conservation of Momentum:

P_{initial} = P_{final}\\m*v_{i} = m*0.516v_{i} + M*V\\0.484m*v_{i} = M*V .... Eq1

Energy Balance:

\frac{1}{2}*m*v^2_{i} = \frac{1}{2}*m*(0.516v_{i})^2 + \frac{1}{2}*M*V^2 + 0.413*\frac{1}{2}*m*v^2_{i}\\\\0.320744*m*v^2_{i} = M*V^2\\\\M = \frac{0.320744*m*v^2_{i} }{V^2}  ....... Eq 2

Substitute Eq 2 into Eq 1

0.484*m*v_{i} = \frac{0.320744*m*v^2_{i} }{V^2} *V  \\0.484 = 0.320744*\frac{v_{i} }{V} \\\\V = 0.663*v_{i}

Using Eq 1

0.484m*v_{i} = M* 0.663v_{i}\\\\M = 0.730*m

7 0
3 years ago
Geologists have divided Earth's history into time units, which are regularly based on
Arturiano [62]
They are based on layers of rock the correspond to certain time periods, so my guess would be D.
8 0
3 years ago
What does the term "speed" describe?
Blababa [14]
The cyclist who travels 20 kilometers per hour for 15 kilometers
7 0
3 years ago
A heavy anvil is suspended by a 0.75 m long steel wire that has a mass of 12 g. When the wire is plucked, it hums at its fundame
Dima020 [189]

Explanation:

It is given that,

length of steel wire, l = 0.75 m

Mass of the wire, m = 12 g = 0.012 kg

Fundamental frequency, f = 120 Hz

We need to find the mass of the anvil (m'). The fundamental frequency is given by :

f=\dfrac{v}{2l}

v is the speed of the mass

Speed is given by :

v=\sqrt{\dfrac{T}{\mu}}

\mu is the mass per unit length,\mu=\dfrac{m}{l}

f=\dfrac{1}{2l}\sqrt{\dfrac{T}{\mu}}

T is the tension in the wire,

f=\dfrac{1}{2l}\sqrt{\dfrac{Tl}{m}}

T=4f^2lm

T=4(120)^2\times 0.75\times 0.012

T = 518.4 N

Tension in the wire, T = m' g

m'=\dfrac{T}{g}

m'=\dfrac{518.4}{9.8}

m' = 52.89 kg

So, the mass of the anvil is 52.89 kg. Hence, this is the required solution.

6 0
3 years ago
An unknown material has a mass
atroni [7]

Answer: 1896.55J/kg°C

Explanation:

The quantity of Heat Energy (Q) required to heat a material depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)

Thus, Q = MCΦ

Since,

Q = 1320 joules

Mass of material = 5.61kg

C = ? (let unknown value be Z)

Φ = 0.124°C

Then, Q = MCΦ

1320J = 5.61kg x Z x 0.124°C

1320J = 0.696kg°C x Z

Z = (1320J / 0.696kg°C)

Z = 1896.55 J/kg°C

Thus, the specific heat of the material is 1896.55J/kg°C

4 0
3 years ago
Read 2 more answers
Other questions:
  • Science please help!
    10·2 answers
  • Find the sine,cosine and tangent ratios​
    10·1 answer
  • Anions are formed by _____.
    9·2 answers
  • What factors have caused Earth to evolve over geologic time?
    6·1 answer
  • A book weighing 2.0 Newtons is lifted 3.0 meters in 4.0 seconds. How much work was done? SHOW WORK
    10·1 answer
  • How much heat is absorbed from a 56.00 g sample of Mercury when its tempreature change is 289K?
    12·1 answer
  • If the weight of an object of mass "m" is "mg," then the weight of an object of mass "2m" is
    13·2 answers
  • Cindy runs 2 kilometers every morning. she takes 2 minutes for the first 250 meters, 4 minutes for the next 1,000 meters, 1 minu
    6·1 answer
  • A coil with internal resistance can be modeled as a resistor and an ideal inductor in series. Assume that the coil has an intern
    7·1 answer
  • All of the following are basic need of young children, except
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!