Answer: 1. 0.0256
2. 0.4096
Step-by-step explanation:
Binomial probability formula , to find the probability of getting x successes:
, where n= Total number of trials
p= Probability of getting success in each trial.
Let x be the number of customers will make purchase.
As per given , we have
p= 0.20
n= 4
1. The probability that 3 of the next 4 customers will make a purchase will be:-

![P(x=3)=(4)(0.20)^3(0.80)^{1}\ \ [\because\ ^nC_{n-1}=n]](https://tex.z-dn.net/?f=P%28x%3D3%29%3D%284%29%280.20%29%5E3%280.80%29%5E%7B1%7D%5C%20%5C%20%5B%5Cbecause%5C%20%5EnC_%7Bn-1%7D%3Dn%5D)

Hence, the probability that 3 of the next 4 customers will make a purchase = 0.0256
2. The probability that none of the next 4 customers will make a purchase will be :

![P(x=0)=(1)(0.80)^{4}\ \ [\because\ ^nC_{0}=1]](https://tex.z-dn.net/?f=P%28x%3D0%29%3D%281%29%280.80%29%5E%7B4%7D%5C%20%5C%20%5B%5Cbecause%5C%20%5EnC_%7B0%7D%3D1%5D)

Hence, the probability that none of the next 4 customers will make a purchase= 0.4096
Sorry but i only know the answer for the 1st question.
--------------------------
If the angles are complementary they measure 90°.
1st find half of 90
which is 45.
Find 4 more than 45.
which is 49°
then subtract 90-49=41
so the measurement of the 2 angles are
49 and 41
Hope it helps!!
Answer:
∠ U = 60°
Step-by-step explanation:
The tangent- tangent angle U is half the difference of its intercepted arcs
minor arc VT = 120° , then
major arc VT = 360° - 120° = 240°
Then
∠ U =
(240 - 120)° =
× 120° = 60°
A circle is a geometric object that has symmetry about the vertical and horizontal lines through its center. When the circle is a unit circle (of radius 1) centered on the origin of the x-y plane, points in the first quadrant can be reflected across the x- or y- axes (or both) to give points in the other quadrants.
That is, if the terminal ray of an angle intersects the unit circle in the first quadrant, the point of intersection reflected across the y-axis will give an angle whose measure is the original angle subtracted from the measure of a half-circle. Since the measure of a half-circle is π radians, the reflection of the angle π/6 radians will be the angle π-π/6 = 5π/6 radians.
Reflecting 1st-quadrant angles across the origin into the third quadrant adds π radians to their measure. Reflecting them across the x-axis into the 4th quadrant gives an angle whose measure is 2π radians minus the measure of the original angle.