So the initial velocity is 15 m/s, the final velocity is 0 since it's at a complete stop and time is 10 seconds. Therefore:

Therefore, the acceleration is -1.5 m/s^2. The reason it's negative is due to the fact that the vector is going against it's original movement since it's decelerating.
Answer:
8.91 J
Explanation:
mass, m = 8.20 kg
radius, r = 0.22 m
Moment of inertia of the shell, I = 2/3 mr^2
= 2/3 x 8.2 x 0.22 x 0.22 = 0.265 kgm^2
n = 6 revolutions
Angular displacement, θ = 6 x 2 x π = 37.68 rad
angular acceleration, α = 0.890 rad/s^2
initial angular velocity, ωo = 0 rad/s
Let the final angular velocity is ω.
Use third equation of motion
ω² = ωo² + 2αθ
ω² = 0 + 2 x 0.890 x 37.68
ω = 8.2 rad/s
Kinetic energy,

K = 0.5 x 0.265 x 8.2 x 8.2
K = 8.91 J
Answer:
The person feels cool at first because the swimming pool water is usually cool and he/she has that water on his body. But when it evaporates, the cool air directly touches his body and that's why he/she feels cold.
Thank You! Please mark me Brainliest!
This is where we have to admit that gravitational potential energy is
one of those things that depends on the "frame of reference", or
'relative to what?'.
Potential energy = (mass) x (gravity) x (<em>height</em>).
So you have to specify <em><u>height above what</u></em> .
-- With respect to the ground, the ball has zero potential energy.
(If you let go of it, it will gain zero kinetic energy as it falls to
the ground.)
-- With respect to the floor in your basement, the potential energy is
(3) x (9.8) x (3 meters) = 88.2 joules.
(If you let go of it, it will gain 88.2 joules of kinetic energy as it falls
to the floor of your basement.)
-- With respect to the top of that 10-meter hill over there, the potential
energy is
(3) x (9.8) x (-10) = -294 joules
(Its potential energy is negative. After you let go of it, you have to give it
294 joules of energy that it doesn't have now, in order to lift it to the top of
the hill <em>where it will have zero</em> potential energy.)