Answer:
I = 8.75 kg m
Explanation:
This is a rotational movement exercise, let's start with kinetic energy
K = ½ I w²
They tell us that K = 330 J, let's find the angular velocity with kinematics
w² = w₀² + 2 α θ
as part of rest w₀ = 0
w = √ 2α θ
let's reduce the revolutions to the SI system
θ = 30.0 rev (2π rad / 1 rev) = 60π rad
let's calculate the angular velocity
w = √(2 0.200 60π)
w = 8.683 rad / s
we clear from the first equation
I = 2K / w²
let's calculate
I = 2 330 / 8,683²
I = 8.75 kg m
Answer:
A step down transformer is a device that can be connected to the switch and the appliance. There are two types of transformers that you should know about: step up and step down transformers. Step up transformers generally produce a higher output voltage than the input voltage.
Explanation:
Answer:
a) -31.36 m/s
b) 50.176 m
Explanation:
<h2>a) Velocity of the bag</h2>
This is a problem of motion in one direction (specifically vertical motion), and the equation that best fulfills this approach is:
(1)
Where:
is the final velocity of the supply bag
is the initial velocity of the supply bag (we know it is zero because we are told <u>it was "dropped", this means it goes to ground in free fall</u>)
is the acceleration due gravity (the negtive sign indicates the gravity is downwards, in the direction of the center of the Earth)
is the time
Knowing this, let's solve (1):
(2)
Hence:
Note the negative sign is because the direction of the bag is downwards as well.
<h2>b) Final height of the bag</h2>
In this case we will use the following equation:
(3)
Where:
is the distance the bag has fallen
remembering <u>the bag was dropped</u>
is the acceleration due gravity (downwards)
is the time
Then:
(3)
(4)
Finally:
Answer:For this equation you would have to take the numerator and multiply with the other one, which would leave you with 24/80 and if you want the simplified version it would be 3/10, hope this helps! :)
Explanation: