Actually it's
and it says that the energy of an object (E) is equal to the mass (m) of the object multiplied with the squared speed of light (
). This theory says that mass can be turned into energy and energy can be turned into mass. This is one of Einstein's theory of relativity.
Answer:
265 J
Explanation:
where KE is kinetic energy, PE is potential energy, m is the mass of an object, v is the speed, h is the height and g is acceleration due to gravity.
Substituting 19.7 Kg for mass, 0.934 for h, 2.93 for v and 9.81 for g then
Velocity = 14 m/s
Time = 20 s
Displacement = Velocity×Time = (14×20) m = 280 m
The displacement is 280 m towards the direction of motion.
Answer:
Incomplete question: The masses of the blocks m₂ = 1.5 kg and m₃ = 2 kg
Explanation:
Given data:
L₁ = length = 0.85 m
L₂ = 0.25 m
L₃ = 0.5 m
m₂ = 1.5 kg
m₃ = 2 kg
Question: Find the unknown mass of the block 1 needed to balance the bar, m₁ = ?
The torque is zero (intermediate point of the bar)
Is negative because mass 1 is to the left of the coordinate system (see the diagram)
Answer:
Explanation:
Comment
You could calculate it out by assuming the same starting temperature for each substance. (You have to assume that the substances do start at the same temperature anyway).
That's like shooting 12 with 2 dice. It can be done, but aiming for a more common number is a better idea.
Same with this question.
You should just develop a rule. The rule will look like this
The greater the heat capacity the (higher or lower) the change in temperature.
The greater the heat capacity the lower the change in temperature
That's not your question. You want to know which substance will have the greatest temperature change given their heat capacities.
Answer
lead. It has the smallest heat capacity and therefore it's temperature change will be the greatest.