Answer:
Thus, if field were sampled at same distance, the field due to short wire is greater than field due to long wire.
Explanation:
The magnetic field, B of long straight wire can be obtained by applying ampere's law

I is here current, and r's the distance from the wire to the field of measurement.
The magnetic field is obviously directly proportional to the current wire. From this expression.
As the resistance of the long cable is proportional to the cable length, the short cable becomes less resilient than the long cable, so going through the short cable (where filled with the same material) is a bigger amount of currents. If the field is measured at the same time, the field is therefore larger than the long wire because of the short wire.
Answer:
Integrated circuit (IC)
Explanation:
An integrated circuit ( IC ) is a semiconductor which contains multiple electronic components
interconnected to form a complete electronic function. Integrated circuits are the most essential part of all electronic products.
Modern integrated circuits contain as much as billions of circuit components such as transistors , diodes , resistors , and capacitors
onto a single monolithic die .
Forces that are equal in size but opposite in direction and do not cause a change in an object's movement are called balanced forces.
forces that aren't equal in size and do cause a change in movement (what it seems like you're asking for) are called UNBALANCED FORCES
so answer (in case that wasn't clear, as I'm tired) : unbalanced forces
Answer:
21000 N
Explanation:
From the question given above, the following data were obtained:
Change in momentum = 105000 kg.m/s
Time = 5s
Force =?
Force is related to momentum and time according to the following formula:
Force = Change in momentum / time
With the above formula, we can calculate the force the white car experience during the collision. This can be obtained as illustrated below:
Change in momentum = 105000 kg.m/s
Time = 5s
Force =?
Force = Change in momentum / time
Force = 105000 / 5
Force = 21000 N
Thus, the white car experience a force of 21000 N during the collision.