solution:
radius of steel ball(r)=5cm=0.05m
density of ball =8000kgm
terminal velocity(v)=25m/s^2
density of air( d) =1.29 kgm
now
volume of ball(V)=4/3pir^3=1.33×3.14×0.05^3=0.00052 m^3
density of ball= mass of ball/Volume of ball
or, 8000=m/0.00052
or, m=4.16 kg
weight of the ball (W)= mg=4.16×10=41.6 N
viscous force(F)=6 × pi × eta × r × v
=6×3.14×eta×0.05×25
=23.55×eta
To attain the terminal velocity,
Fiscous force=Weight
or, 23.55× eta = 41.6
or, eta = 1.76
whete eta is the coefficient of viscosity.
The Netherlands controlled Indonesia for centuries!
D. All of the above
At high tide fish will feed among the mangrove roots - rich fishing ground
The trees trap sediment and soil in the river that would flow out to sea which also helps stop erosion
Wildlife utilise almost every part of the tree, with insects and birds, monkeys and lizards in the branches, shrimps and fish in the roots, and snails and clams in the soil
Answer:
2.83
Explanation:
Kepler's discovered that the square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit, that is called Kepler's third law of planet motion and can be expressed as:
(1)
with T the orbital period, M the mass of the sun, G the Cavendish constant and a the semi major axis of the elliptical orbit of the planet. By (1) we can see that orbital period is independent of the mass of the planet and depends of the semi major axis, rearranging (1):
(2)
Because in the right side of the equation (2) we have only constant quantities, that implies the ratio is constant for all the planets orbiting the same sun, so we can said that: