I think that the answer to that is true hope that helps
Answer:
v = 2.94 m/s
Explanation:
When the spring is compressed, its potential energy is equal to (1/2)kx^2, where k is the spring constant and x is the distance compressed. At this point there is no kinetic energy due to there being no movement, meaning the net energy in the system is (1/2)kx^2.
Once the spring leaves the system, it will be moving at a constant velocity v, if friction is ignored. At this time, its kinetic energy will be (1/2)mv^2. It won't have any spring potential energy, making the net energy (1/2)mv^2.
Because of the conservation of energy, these two values can be set equal to each other, since energy will not be gained or lost while the spring is decompressing. That means
(1/2)kx^2 = (1/2)mv^2
kx^2 = mv^2
v^2 = (kx^2)/m
v = sqrt((kx^2)/m)
v = x * sqrt(k/m)
v = 0.122 * sqrt(125/0.215) <--- units converted to m and kg
v = 2.94 m/s
Answer:
Part a)

part b)

Part c)

Part d)
here since wave is moving in negative direction so the sign of
must be positive
Explanation:
As we know that the speed of wave in string is given by

so we have


now we have


now we have
Part a)
= amplitude of wave

part b)

here we know that


so we have


Part c)

Part d)
here since wave is moving in negative direction so the sign of
must be positive
According to law of conservation of mass within a reaction,
The mass of the compound formed is (23+35.5) grams means 58.5 grams of sodium chloride[NaCl] will be formed.