The answer is Newton's 3rd Law. The reason why is because a force is a push or a pull that acts upon an object as a results of its interaction with another object. ... These two forces are called action and reaction forces and are the subject ofNewton's third law of motion. Formally stated, Newton's third law is: For every action, there is an equal and opposite reaction.
<h2>
Answer:</h2>
-310J
<h2>
Explanation:</h2>
The change in internal energy (ΔE) of a system is the sum of the heat (Q) and work (W) done on or by the system. i.e
ΔE = Q + W ----------------------(i)
If heat is released by the system, Q is negative. Else it is positive.
If work is done on the system, W is positive. Else it is negative.
<em>In this case, the system is the balloon and;</em>
Q = -0.659kJ = -695J [Q is negative because heat is removed from the system(balloon)]
W = +385J [W is positive because work is done on the system (balloon)]
<em>Substitute these values into equation (i) as follows;</em>
ΔE = -695 + 385
ΔE = -310J
Therefore, the change in internal energy is -310J
<em>PS: The negative value indicates that the system(balloon) has lost energy to its surrounding, thereby making the process exothermic.</em>
<em />
<em />
Answer: A. The total displacement divided by the time and C. The slope of the ant's displacement vs. time graph.
Explanation:
Hi! The question seems incomplete, but I found the options on the internt:
A. The total displacement divided by the time.
B. The slope of the ant's acceleration vs. time graph.
C. The slope of the ant's displacement vs. time graph.
D. The average acceleration divided by the time.
Now, since we know the ant is travelling at a constant speed, its average velocity
will be expressed by the following equation:

Where:
is the ant's total displacement
is the time it took to the ant to travel to the kitchen
Hence one of the correct options is: A. The total displacement divided by the time
On the other hand, this can be expressed by a displacement vs. time graph graph, where the slope of that line leads to the equation written above. So, the other correct option is:
C. The slope of the ant's displacement vs. time graph.
Answer:
0.12
Explanation:
The acceleration due to gravity of a planet with mass M and radius R is given as:
g = (G*M) / R²
Where G is gravitational constant.
The mass of the planet M = 3 times the mass of earth = 3 * 5.972 * 10^24 kg
The radius of the planet R = 5 times the radius of earth = 5 * 6.371 * 10^6 m
Therefore:
g(planet) = (6.67 * 10^(-11) * 3 * 5.972 * 10^24) / (5 * 6.371 * 10^6)²
g(planet) = 1.18 m/s²
Therefore ratio of acceleration due to gravity on the surface of the planet, g(planet) to acceleration due to gravity on the surface of the planet, g(earth) is:
g(planet)/g(earth) = 1.18/9.8 = 0.12
Answer:
True
Explanation:
Magnitude is the "value" the greater the value the greater the force is and vice versa