The answer is; active transport
This means that energy is expended in the process. Because large protein cannot be transported through protein channels in the plasma membrane for being too big, they are transported through endocytosis. This means a vesicle merges with the plasma membrane and forms an invagination that engulfs the protein. The vesicle then encloses with the protein inside and moves into the cell.
Also, remember, light energy (from the sun) is a reactant for photosynthesis. The plant uses water sunlight and carbon dioxide to make sugars as well as oxygen. Plants, the organisms that carry out photosynthesis, are typically the first ate organism is a Food chain and so most other organisms energy came from the plant somehow. But the plant got its energy from the sun.
<h3>
Answer:</h3>
0.387 J/g°C
<h3>
Explanation:</h3>
- To calculate the amount of heat absorbed or released by a substance we need to know its mass, change in temperature and its specific heat capacity.
- Then to get quantity of heat absorbed or lost we multiply mass by specific heat capacity and change in temperature.
- That is, Q = mcΔT
in our question we are given;
Mass of copper, m as 95.4 g
Initial temperature = 25 °C
Final temperature = 48 °C
Thus, change in temperature, ΔT = 23°C
Quantity of heat absorbed, Q as 849 J
We are required to calculate the specific heat capacity of copper
Rearranging the formula we get
c = Q ÷ mΔT
Therefore,
Specific heat capacity, c = 849 J ÷ (95.4 g × 23°C)
= 0.3869 J/g°C
= 0.387 J/g°C
Therefore, the specific heat capacity of copper is 0.387 J/g°C
The formula for rubidium nitride is RbNO3.