<span>You need to consider the valences of the two elements. Potassium is +1; nitrogen is -3. To balance the molecule, you need 3 potassium to one nitrogen, or K3N</span>
Ice cubes are made of water which has undergone freezing, which made it into ice. Both ice cubes and water have the same properties. But in this case, when ice and water are mixed, it is considered a heterogeneous mixture and not homogeneous. Why? Going back to the definition of what a heterogeneous mixture is, this mixture shows a visible difference of difference phases or substances. In the ice and water mixture, it is obviously seen that ice is solid, and water is liquid.
<u>Answer:</u> The rate law of the reaction is ![\text{Rate}=k[HgCl_2][C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5BC_2O_4%5E%7B2-%7D%5D%5E2)
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[HgCl_2]^a[C_2O_4^{2-}]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5Ea%5BC_2O_4%5E%7B2-%7D%5D%5Eb)
where,
a = order with respect to 
b = order with respect to 
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Expression for rate law for third observation:
....(3)
Expression for rate law for fourth observation:
....(4)
Dividing 2 from 1, we get:

Dividing 2 from 3, we get:

Thus, the rate law becomes:
![\text{Rate}=k[HgCl_2]^1[C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5E1%5BC_2O_4%5E%7B2-%7D%5D%5E2)
The answer is 6.88.
Solution:
We can calculate for the percent composition of CaCl2 by mass by dividing the mass of the CaCl2 solute by the mass of the solution and then multiply by 100. The total mass of the resulting solution is the sum of the mass of CaCl2 solute and the mass of water solvent. Therefore, the percent composition of CaCl2 by mass is
% by mass = (mass of the solute / mass of the solution)*100
= mass of solute / (mass of the solute + mass of the solvent)*100
= (27.7 g CaCl2 / 27.7g + 375g) * 100
= 6.88