Answer:
The questions are incomplete
Explanation:
(b) This question is incomplete. However to calculate the number of moles of CuSO₄ present in the impure sample. The formula below can be used;
number of moles = mass of CuSO₄ present in the impure sample ÷ molar mass of CuSO₄
(c) This question is also incomplete. However, to calculate the mass percentage of CuSO₄ present in the impure sample of CuSO₄, the formula below can be used.
Mass percentage of CuSO₄ =
mass of CuSO₄ present in the impure sample/mass of impure CuSO₄ × 100
Thus, the mass of the impure sample must be measured also since the actual mass of the CuSO₄ present in the impure sample must have been measured before calculating the number of moles.
The protons and electrons of an atom are attracted to each other. They both carry an electrical charge. Protons have a positive charge (+) and electrons have a negative charge (-). The positive charge of the protons is equal to the negative charge of the electrons.
Answer:
One distinguishing feature between physical and chemical changes is that a physical change can be reverse or turn back to its original form, but chemical change cannot be return to its form because the material change.
Explanation:
Answer:
A) Dilute the unknown so that it will have an absorbance within the standard curve. Once the diluted unknown concentration is determined, the full strength concentration can be calculated if the dilution process is recorded. Beer's law only applies to dilute solutions, so diluting the unknown is better than making new standards.
Explanation:
Beer's law states that <em>absorbance is proportional to the concentrations of the absorbing species</em>. This is verified in the case of diluted solutions (0≤0.01 M) of most substances. <u>As a solution gets more concentrated, solute molecules interact between themselves because of their proximity. </u>When a molecule interacts with another, the change in their electric properties (including absorbance) is probable. That's why <u>the plot of absorbance versus concentration stops being a straight line</u>, and <u>Beer's law is no longer valid.</u>
Therefore, if the absorbance value is higher than the highest standard, dilutions should be made. Once this concentration is determined, the full strength concentration can be calculated with the inverse of the dilution.
Answer:
The pressure contribution from the heavy particles is 17.5 atm
Explanation:
According to Dalton's law of partial pressures, if there is a mixture of gases which do not react chemically together, then the total pressure exerted by the mixture is the sum of the partial pressures of the individual gases that make up the mixture.
In the simulation:
the pressure of the 50 light particles alone was determined to be 5.9 atm, the pressure of the 150 heavy particles alone was measured to be 17.5 atm,
the total pressure of the mixture of 150 heavy and 50 light particles was measured to be 23.4 atm
Total pressure = partial pressure of Heavy particles + partial pressure of light particles
23.4 atm = partial pressure of Heavy particles + 5.9 atm
Partial pressure of Heavy particles = (23.4 - 5.9) atm
Partial pressure of Heavy particles = 17.5 atm
Therefore, the pressure contribution from the heavy particles is 17.5 atm