The correct answer is A. Longing I know because I just finished the quiz.
Answer:
- 12 ft parallel to the river
- 6 ft perpendicular to the river
Step-by-step explanation:
The least fence is used when half the total fence is parallel to the river. That is, the shape of the rectangle is twice as long as it is wide.
72 = W(2W)
36 = W²
6 = W . . . . . . the width perpendicular to the river
12 = 2W . . . . the length parallel to the river
_____
<em>Development of this relation</em>
Let T represent the total length of the fence for some area A. Then if x is the length along the river, the width is y=(T-x)/2, and the area is ...
A = xy = x(T -x)/2
Note that the equation for area is that of a parabola with zeros at x=0 and at x=T. That is, for some fence length T, the area will be a maximum at the vertex of this parabola. That vertex is located halfway between the zeros, at ...
x = (0 +T)/2 = T/2
The corresponding area width (y) is ...
y = (T -T/2)/2 = T/4
Equivalently, the fence length T will be a minimum for some area A when x=T/2 and y=T/4. This is the result we used above.
Answer:
Step-by-step explanation:
The Beg balance means what she was having initially =$154.90
The pay check and deposit are credits on her account so they were added.
The wig, shoes and makeup she bought were debits, so they were subtracted
Closing balance is the amount left after the debits have been subtracted from the credits
<h2>
Answer:</h2>
The ratio of the area of region R to the area of region S is:

<h2>
Step-by-step explanation:</h2>
The sides of R are in the ratio : 2:3
Let the length of R be: 2x
and the width of R be: 3x
i.e. The perimeter of R is given by:

( Since, the perimeter of a rectangle with length L and breadth or width B is given by:
)
Hence, we get:

i.e.

Also, let " s " denote the side of the square region.
We know that the perimeter of a square with side " s " is given by:

Now, it is given that:
The perimeters of square region S and rectangular region R are equal.
i.e.

Now, we know that the area of a square is given by:

and

Hence, we get:

and

i.e.

Hence,
Ratio of the area of region R to the area of region S is:
