Answer:
Elemental gold to have a Face-centered cubic structure.
Explanation:
From the information given:
Radius of gold = 144 pm
Its density = 19.32 g/cm³
Assuming the structure is a face-centered cubic structure, we can determine the density of the crystal by using the following:


a = 407 pm
In a unit cell, Volume (V) = a³
V = (407 pm)³
V = 6.74 × 10⁷ pm³
V = 6.74 × 10⁻²³ cm³
Recall that:
Net no. of an atom in an FCC unit cell = 4
Thus;


density d = 19.41 g/cm³
Similarly; For a body-centered cubic structure

where;
r = 144


a = 332.56 pm
In a unit cell, Volume V = a³
V = (332.56 pm)³
V = 3.68 × 10⁷ pm³
V 3.68 × 10⁻²³ cm³
Recall that:
Net no. of atoms in BCC cell = 2
∴


density =17.78 g/cm³
From the two calculate densities, we will realize that the density in the face-centered cubic structure is closer to the given density.
This makes the elemental gold to have a Face-centered cubic structure.
The question is incomplete. Complete question is attached below.
..........................................................................................................................
Correct Answer: <em>Option 1) 2-pentene</em>
Reason:
Following are the IUPAC rules for naming the compound
1) Select the
longest carbon chain. In present case longest carbon chain has 5 carbon atom. Hence, it is a pentane derivative.
2) In case of alkene,
replace 'e' of alkane by 'ene'3) Give
lowest number to function group. In present case, it is double bond.
Applying above rules, the IUPAC name of compound is
2-pentene
Because Electrons have a negative charge
Answer:
10
Explanation:
I did that already. You got beo