Answer:
The volume of sodium hydroxide at the equivalence point is:
- <u>14.9 mL of sodium hydroxide</u>.
Explanation:
<u>The equivalence point occurs when, in this case, the HCl is completely neutralized with the solution of NaOH, how you can see this doesn't occur in the last point but occurs in the nineteenth point, where the pH is no more acid (below to 7) but is 11 approximately</u>, then you must see in the X-axis from this point and you can see the volume is almost 15, by this reason I calculate the valor of 14.9 milliliters.
Answer : The value of for the reaction is -959.1 kJ
Explanation :
The given balanced chemical reaction is,
First we have to calculate the enthalpy of reaction .
where,
= enthalpy of reaction = ?
n = number of moles
= standard enthalpy of formation
Now put all the given values in this expression, we get:
conversion used : (1 kJ = 1000 J)
Now we have to calculate the entropy of reaction .
where,
= entropy of reaction = ?
n = number of moles
= standard entropy of formation
Now put all the given values in this expression, we get:
Now we have to calculate the Gibbs free energy of reaction .
As we know that,
At room temperature, the temperature is 500 K.
Therefore, the value of for the reaction is -959.1 kJ
C) Calcium chloride has stronger inter molecular forces than water.
You should always study. you can be above your class. thats what i do.. search google for ur course. they can tell u some key points for it. u should even study what you know and want to know as well.
6.6ml will be the new volume if the pressure increases to 4 atm and the temperature are lowered to 200 K.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Given data:
Using equation:
Hence, 6.6ml will be the new volume if the pressure increases to 4 atm and the temperature are lowered to 200 K.
Learn more about the ideal gas equation here:
#SPJ1