Answer:
a) Frope= 71.7 N
b) Frope=6.7 N
Explanation:
In the figure the skier is simulated as an object, "a box".
a) At constant velocity we can say that the object is in equilibrium, so we apply the Newton's first law:
∑F=0
Frope=w*sen6.8°
Frope=71.71N
Take into account that w is the weight that is calculated as mass per gravitiy constant:
w=m*g


b) In this case the system has an acceleration of 0.109m/s2. Then, we apply Newton's second law of motion:
F=m*a
F=61.8Kg*0.109m/s2
Frope=6.73N
Answer:
<em>The y component of his displacement is 11.22 meters</em>
Explanation:
<u>Components of the displacement</u>
The displacement is a vector because it has a magnitude and a direction. Let's suppose a displacement has a magnitude r and a direction θ, measured with respect to the positive x-direction. The horizontal component of the displacement is calculated by:

The vertical component is calculated by:

The hiker has a displacement with magnitude r = 20.51 m at an angle of 33.16 degrees. Substituting in the above equation:


The y component of his displacement is 11.22 meters
Radiation: Getting sunburnt on a beach.
- The sun’s radiation (no direct contact) is what causes the skin to burn.
Radiation: Microwave cooking food
- Microwaves use radiation to heat the food inside of it; between radio waves and infrared radiation on the electromagnetic spectrum
Conduction: Touching a hot car seat in the summer
- Conduction is the transfer of heat by direct contact (hand to seat).
Conduction: Burning yourself with a curling iron (Similar to above; direct contact).
Convection: An ocean breeze
- Convection near coastlines cause the transfer of energy; water warms and cools slower than land.
Conduction: Sliding down a hot metal slide in august
- You are in direct contact with the slide, which is hot due to the temperature.
Convection: Water in a boiling pot of macaroni
- The water, a liquid, is being heated by molecular motion.
Convection: Currents deep within the earth that cause tectonic plates to move
- Convection currents drive the movement of tectonic plates in the mantle, which is fluid/molten. The currents circulate under the asthenosphere.
No spacecraft has been built yet that was able to absorb harmful
radiations in space, change weather conditions on Earth, or destroy
meteors and comets which might strike Earth.
We should continue to send robotic spacecrafts into space
because they help discard some myths about objects in space.
In other words, they help us learn things that we never knew before.
Answer:
The speed of the heavier fragment is 0.335c.
Explanation:
Given that,
Mass of the lighter fragment 
Mass of the heavier fragment 
Speed of lighter fragment = 0.893c
We need to calculate the speed of the heavier fragment
Let v is the speed of the second fragment after decay
Using conservation of relativistic momentum













Hence, The speed of the heavier fragment is 0.335c.