1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
malfutka [58]
3 years ago
11

A hiker walks 20.51 m at 33.16 degrees. What is the Y component of his displacement?

Physics
1 answer:
Serhud [2]3 years ago
7 0

Answer:

<em>The y component of his displacement is 11.22 meters</em>

Explanation:

<u>Components of the displacement</u>

The displacement is a vector because it has a magnitude and a direction. Let's suppose a displacement has a magnitude r and a direction θ, measured with respect to the positive x-direction. The horizontal component of the displacement is calculated by:

x=r\cos\theta

The vertical component is calculated by:

y=r\sin\theta

The hiker has a displacement with magnitude r = 20.51 m at an angle of 33.16 degrees. Substituting in the above equation:

y=20.51\sin(33.16^\circ)

y=11.22\ m

The y component of his displacement is 11.22 meters

You might be interested in
The fundamental of a closed organ pipe is 259.6 Hz. The second harmonic of an open organ pipe has the same frequency. What is th
elixir [45]

Answer:

A closed organ pipe is λ/4  (node-antinode) long.

λ = speed / frequency = 331.5 / 259.6 = 1.28 m

λ/4 = .319 m     length of closed pipe

An open pipe has a fundamental wavelength of A-N-A or λ/2

The second harmonic would be A-N-A-N-A   or   λ = 1.28 m for the second harmonic   331.5 / 259.6 = 1.28  (the fundamental would be 331.5 / .628

7 0
2 years ago
Please help ASAP please ASAP
alina1380 [7]
The answer to your question is 185
5 0
3 years ago
A disk with mass 1.64 kg and radius 0.61 meters is spinning counter-clockwise with an angular velocity of 17.6 rad/s. A rod of m
Masja [62]

Answer:

The loss in rotational kinetic energy due to the collision is 36.585 J.

Explanation:

Given;

mass of the disk, m₁ = 1.64 kg

radius of the disk, r = 0. 61 m

angular velocity of the disk, ω₁ = 17.6 rad/s

mass of the rod, m₂ = 1.51 kg

length of the rod, L = 1.79 m

angular velocity of the rod, ω₂ =  5.12 rad/s (clock-wise)

let the counter-clockwise be the positive direction

let the clock-wise be the negative direction

The common final velocity of the two systems after the collision is calculated by applying principle of conservation of angular momentum ;

m₁ω₁  + m₂ω₂ = ωf(m₁ + m₂)

where;

ωf is the common final angular velocity

1.64 x 17.6    + 1.51(-5.12) = ωf(1.64 + 1.51)

21.1328 = ωf(3.15)

ωf = 21.1328 / 3.15

ωf = 6.709 rad/s

The moment of inertia of the disk is calculated as follows;

I_{disk} = \frac{1}{2} mr^2\\\\I_{disk}  = \frac{1}{2} (1.64)(0.61)^2\\\\I_{disk}  = 0.305 \ kgm^2

The moment of inertia of the rod about its center is calculated as follows;

I_{rod} = \frac{1}{12} mL^2\\\\I_{rod} = \frac{1}{12} \times 1.51 \times 1.79^2\\\\I _{rod }= 0.4032\ kgm^2

The initial rotational kinetic energy of the disk and rod;

K.E_i = \frac{1}{2} I_{disk}\omega _1 ^2 \ \ + \ \  \frac{1}{2} I_{rod}\omega _2 ^2 \\\\K.E_i=  \frac{1}{2} (0.305)(17.6) ^2 \ \ + \ \  \frac{1}{2} (0.4032)(-5.12) ^2\\\\K.E_i = 52.523 \ J

The final rotational kinetic energy of the disk-rod system is calculated as follows;

K.E_f = \frac{1}{2} I_{disk}\omega _f ^2 \ \ + \ \  \frac{1}{2} I_{rod}\omega _f ^2\\\\K.E_f = \frac{1}{2} \omega _f ^2(I_{disk} + I_{rod})\\\\K.E_f = \frac{1}{2} (6.709) ^2(0.305+ 0.4032)\\\\K.E_f = 15.938 \ J

The loss in rotational kinetic energy due to the collision is calculated as follows;

\Delta K.E = K.E_f \ - \ K.E_i\\\\\Delta K.E = 15.938 J  \ - \ 52.523 J\\\\\Delta K.E = - 36.585 \ J

Therefore, the loss in rotational kinetic energy due to the collision is 36.585 J.

8 0
2 years ago
(Please help asap)
siniylev [52]
The answer would be B
5 0
3 years ago
Two objects of equal mass collide on a horizontal frictionless surface. Before the collision, object A is at rest while object B
fenix001 [56]

Answer: 6m/s

Explanation:

Using the law of conservation of momentum, the change in momentum of the bodies before collision is equal to the change in momentum after collision.

After collision, the two objects will move at the same velocity (v).

Let mA and mB be the mass of the two objects

uA and uB be their velocities before collision.

v be their velocity after collision

Since the two objects has the same mass, mA= mB= m

Also since object A is at rest, its velocity = 0m/s

Velocity of object B = 12m/s

Mathematically,

mAuA + mBuB = (mA+mB )v

m(0) + m(12) = (m+m)v

0+12m = (2m)v

12m = 2mv

12 = 2v

v = 6m/s

Therefore the speed of the composite body (A B) after the collision is 6m/s

7 0
3 years ago
Other questions:
  • Explain why a law is accepted as facr, but a theory is not​
    9·1 answer
  • Sam is traveling at 25 m/s for a total of 50 seconds how far does Sam Travel
    9·1 answer
  • Calculate the momentum of a 953kg elephant running at a rate of 3.85 m/s.
    8·1 answer
  • 1. in a series circuit, as light bulbs are added, the voltage at the battery increases/decreasees/remains the same
    9·1 answer
  • Which of Franz Mesmer’s claims about his mesmerism abilities eventually led to his downfall?
    5·2 answers
  • The lifting force generated by fluids on immersed objects is known as ____________.
    7·1 answer
  • Which of the following is an example of a chemical change
    8·1 answer
  • What will happen if a car experiences a 300 N force to the right from the engine and a separate 150 N force due to friction and
    11·1 answer
  • The ,______provides rigidity and protection to the plant cell​
    14·1 answer
  • Someone pls help I don’t understand this
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!