The fast lap is irrelevant to the question, because it didn't happen
until after the 9 laps that you're interested in.
To be perfectly technical about it, we don't actually have enough
information to answer the question. You told us her average speed
for 10 laps, but we don't know anything about how her speed may
have changed during the whole 10 laps. For all we know, maybe
she took a nap first, and then got up and drove 10 laps at the speed
of 125 metres per second. That would produce the average speed
of 12.5 metres per second and we would never know it Why not ?
That's only 280 miles per hour. Bikes can do that, can't they ?
IF we can assume that Amy maintained a totally steady pace through
the entire 10 laps, then we could say that her average for 9 laps was
also 12.5 metres per second.
Answer:
Planetary are deflected to right due to Coriolis effect.
Explanation:
The term Coriolis effect is defined as an effect in which the rotating object experience a force called as coriolis force which acts perpendicular to the axis of rotation and direction of motion. The effect talks about how the moving objects like ocean currents, wind are deflected due to the rotation of earth.
Winds and ocean currents are strongly affect by this effect.
The acceleration of gravity on Earth is 9.8 m/s². That means that
an object falling under the influence of gravity will move 9.8 m/s
faster than it was moving a second earlier.
Falling from rest, it will be moving 9.8 m/s after the first second,
and 19.6 m/s after the 2nd second.
The height from which it fell doesn't matter.