Answer:
31.4 m/s
Explanation:
The Doppler equation describes how sound frequency depends on relative velocities:
fr = fs (c + vr)/(c + vs),
where fr is the frequency heard by the receiver,
fs is the frequency emitted at the source,
c is the speed of sound,
vr is the velocity of the receiver,
and vs is the velocity of the source.
Note: vr is positive if the receiver is moving towards the source, negative if away.
Conversely, vs is positive if the receiver is moving away from the source, and negative if towards.
Given:
fs = 1000 Hz
fr = 1100 Hz
c = 345 m/s
vr = 0 m/s
Find: vs
1100 = 1000 (345 + 0) / (345 + vs)
vs = -31.4
The speed of the car is 31.4 m/s.
Answer:
ΔT / Δx = 771 K/m
ΔT = 771 x 0.0475 = 36.62 k
Explanation:
P = 31700 W, A = 0.819 m^2, Δx = 0.0475 m, K = 50.2 W /m k
Use the formula of conduction of heat
H / t = K A x ΔT / Δx
So, ΔT / Δx = P / K A
ΔT / Δx = 31700 / (50.2 x 0.819)
ΔT / Δx = 771 K/m
Now
ΔT = 771 x 0.0475 = 36.62 k
anything that contains one cell of life is considered a living thing, a fire however does not contain any cells so it is not considered a living thing/organism
hope this helped you :)
Answer:

Explanation:
Let at any moment of time the friend's car is at some horizontal distance "x" from the position of balloon.
Now if the altitude of the balloon is fixed and it is at height "h"
so here we will have

now we know that
initially the angle of the friend's car is 35 degree
so the horizontal distance will be

similarly if the angle after passing the car position is 36 degree
then we have

now the speed of the balloon is constant
so we have




so the final position of friend when the angle is 36 degree

