Answer:
F=248.5W N
Explanation:
Newton's 2nd Law tells us that F=ma. We will use their averages always. The average acceleration the tennis ball experimented is, by definition:

Since we start counting at 0s and the ball departs from rest, this is just 
So we can write:

Where in the last step we have just multiplied and divided by g, the acceleration of gravity. This allows us to introduce the weight of the ball W since W=gm, so we have:

Substituting our values:

Where the average force exerted has been written it terms of the tennis ball's weight W.
Resistivity is material property. It depends only on temperature. For the same material with different length and area, resistivity remains the same until temperature remains constant.
<h3>HOPE IT HELPS YOU......</h3>
MARK MY ANSWER AS BRAINLIEST
1). The forces inside the atom are always, totally, completely, electrostatic forces. Those are so awesomely stronger than the gravitational forces that the gravitational ones are totally ignored, and it doesn't change a thing.
Parts 2 and 3 of this question are here to show us how the forces compare.
Part-2). The electrostatic force between a proton and an electron.
The constant in the formula is 9x10^9, and the elementary charge is 1.602 x 10^-19 Coulomb ... same charge on both particles, but opposite signs.
I worked through it 3 times and got 0.000105 N every time. So the best choice is 'C', even though we disagree by a factor of ten times. You'll see in part-3 that it really doesn't make any difference.
Part-3). Gravitational force between a proton and an electron.
The constant in Newton's gravity formula is 6.67x10^-11 . You'll have to look up the masses of the proton and the electron.
I got 2.163 x 10^-55 N ... exactly choice-C. yay !
Now, after we've slaved over a hot calculator all night, the thing that really amazes us is not only that the electrostatic force is stronger than the gravitational force, but HOW MUCH stronger ... 10^51 TIMES stronger. That's a thousand trillion trillion trillion trillion times stronger !
That's why it has no effect on the measurements if we just forget all about the gravitational forces inside the atom.
Answer:
asdccccccccccf give me my points
Explanation:
Kinetic energy is the energy possessed by an object when in motion. It is calculated by one half the product of the mass and the square of the velocity of the system.
Kinetic Energy = mv^2 / 2 = 50 (10^2) / 2 = 2500 kg m^2/s^2 or 2500 J
Therefore, the correct answer is option E.