Answer:
Here is something that may help you!!
Explanation:
I found it in a cite (not that I'm plagiarizing, or anything).
RC circuit determines the capacitor's charging rate.
- In RC (resistive and capacitive) circuits, a capacitor's time constant is the number of seconds required to charge it to 63.2% of the input voltage.
- This duration is described by a single time constant. After two time constants, the capacitor will be charged to 86.5% of the input voltage.
- The RC time constant, also referred to as tau, is the time constant (in seconds) of an RC circuit and is obtained by multiplying the circuit resistance (in ohms) by the circuit capacitance (in farads), This transient reaction time T is stated in terms of = R x C, where R is the resistor value in ohms and C is the capacitor value in farads.
Learn more about RC circuits here brainly.com/question/13450553
#SPJ4.
Answer:
c) What is the ratio K2/K1 of their kinetic energies?
Explanation:
The wavelength and frequency of light are closely related. The higher the frequency, the shorter the wavelength. Because all light waves move through a vacuum at the same speed, the number of wave crests passing by a given point in one second depends on the wavelength. That number, also known as the frequency, will be larger for a short-wavelength wave than for a long-wavelength wave.
Answer:
The amount of energy carried by a wave is related to the amplitude of the wave
Explanation:
A high energy wave is characterized by a high amplitude; a low energy wave is characterized by a low amplitude. The energy imparted to a pulse will only affect the amplitude of that pulse.
Hope this helped!!!