If the mass of both of the objects is doubled, then the force of gravity between them is quadrupled; and so on. Since gravitational force is inversely proportional to the square of the separation distance between the two interacting objects, more separation distance will result in weaker gravitational forces
Answer:
The velocity of Mosquito with respect to earth will be 0.302m/s
Explanation:
V(ma) = 1.10 m/s, east Velocity of mosquito with respect to air
V(ae) = 1.4 m/s at 35° Velocity of air with respect to Earth in west of south direction.
Velocity of Mosquito with respect to earth will be
V(me) = V(ma) + V(ae)
We need to find the mosquito’s speed with respect to Earth in the x direction.
V(x, me) = V(x, ma) + V(x, ae) = V(ma) + V(ae)(cos theta(ae) )
Angle (ae) = –90.0° − 35°=−125°
V(x, me) = 1.10 + (1.4)Cos(-125)
= 1.10 + 1.4(-0.57)
= 1.10 -0.798
= 0.302
So the velocity of Mosquito with respect to earth will be 0.302m/s
Answer:
evaporation
Explanation:
without 4he evaporation it can even start the cycsl
(a) The magnitude and direction of the net force on the crate while it is on the rough surface is 36.46 N, opposite as the motion of the crate.
(b) The net work done on the crate while it is on the rough surface is 23.7 J.
(c) The speed of the crate when it reaches the end of the rough surface is 0.45 m/s.
<h3>Magnitude of net force on the crate</h3>
F(net) = F - μFf
F(net) = 280 - 0.351(92 x 9.8)
F(net) = -36.46 N
<h3>Net work done on the crate</h3>
W = F(net) x L
W = -36.46 x 0.65
W = - 23.7 J
<h3>Acceleration of the crate</h3>
a = F(net)/m
a = -36.46/92
a = - 0.396 m/s²
<h3>Speed of the crate</h3>
v² = u² + 2as
v² = 0.845² + 2(-0.396)(0.65)
v² = 0.199
v = √0.199
v = 0.45 m/s
Thus, the magnitude and direction of the net force on the crate while it is on the rough surface is 36.46 N, opposite as the motion of the crate.
The net work done on the crate while it is on the rough surface is 23.7 J.
The speed of the crate when it reaches the end of the rough surface is 0.45 m/s.
Learn more about work done here: brainly.com/question/8119756
#SPJ1
Answer:

Explanation:
From the question we are told that
Mass 
Velocity of mass 
Force of Tunnel 
Length of Tunnel 
Height of frictional incline 
Angle of inclination 
Acceleration due to gravity 
First Frictional surface has a coefficient
Second Frictional surface has a coefficient 
Generally the initial Kinetic energy is mathematically given by



Generally the work done by the Tunnel is mathematically given as



Therefore



Generally the energy lost while climbing is mathematically given as



Generally the energy lost to friction is mathematically given as



Generally the energy left in the form of mass
is mathematically given as



Since

Therefore
It slide along the second frictional region

