A) <u>Weight = mass × acceleration (due to gravity) </u>
= 60×9.8
= 588 N
<u>B) Potential energy = mass x gravity x change in height
</u>
1,000 = 60.0 x 9.8 x h
h = 1.7 m
<u>C) Kinetic energyF = potential energyI
</u>
KEF = 1/2mv2
PEI = mgh = 1,000 J
1/2mv2 = 1,000
1/2(60.0)v2 = 1,000
v2 = 33.33
v = 5.77 m/s
Answer:
U = 80.91 J
Explanation:
In order to calculate the electric potential energy between the three charges you use the following formula:
(1)
k: Coulomb's constant = 8.98*10^9Nm^2/C^2
q1: q2 charge
r1,2: distance between charges 1 and 2.
For the three charges you have:
(2)
You use the fact that q1=q2=q3=q and that the distance between charges are equal. Then, in the equation (2) you have:
q = 1.45μC = 1.45*10^-6C
r = 0.700mm = 0.700*10^-3m

The electric potential energy between the three charges is 80.91 J
Answer:
The last part on the right side of the diagram
Explanation:
Im on plato and just got it right :)
Answer:
T = 17649.03 N = 17.65 KN
Explanation:
The tension in the cable must be equal to the apparent weight of the passenger. For upward acceleration:

where,
T = Tension in cable = ?
= Apparent weight
m = mass = 1603 kg
g = acceleration due to gravity = 9.81 m/s²
a = acceleration of elevator = 1.2 m/s²
Therefore,

<u>T = 17649.03 N = 17.65 KN</u>