Answer:
The power decreases by 36%
Explanation:
Given:
At 20° C
Power, P₀ = 300 W
Potential difference, V = 150 volts
Now, power is given as
P = V²/R
where, R is the resistance
on substituting the values, we get
300 = 150²/R₀
or
R₀ = 75 Ω
Now, the variation of resistance with temperature is given as
R = R₀[1 + α(T - T₀)]
where, α is the temperature coefficient of resistivity = 0.0003125 (°C⁻¹)
now, at
T₀ = 20° C
R₀ = 75 Ω
for
T = 1820° C
we have
R = R₀[1 + α(T - T₀)]
substituting the values
we get
R = 75×[1 + 0.0003125 × (1820 - 20)]
or
R = 117.18 Ω
Now using the formula for power
We have,
P = V²/R
or
P = 150²/117.18 = 192 W
Therefore, the percentage change will be
= 
on substituting the values , we get
= 
= -36%
here, negative sign depicts the decrease in power
Answer:
This is because using a long handled requires less force to the center of gravity and makes it easier to rotate than a short handled spanner
Answer:
(a) 
(b) 
(c) 
Explanation:
First change the units of the velocity, using these equivalents
and 

The angular acceleration
the time rate of change of the angular speed
according to:


Where
is the original velocity, in the case the velocity before starting the deceleration, and
is the final velocity, equal to zero because it has stopped.

b) To find the distance traveled in radians use the formula:


To change this result to inches, solve the angular displacement
for the distance traveled
(
is the radius).


c) The displacement is the difference between the original position and the final. But in every complete rotation of the rim, the point returns to its original position. so is needed to know how many rotations did the point in the 890.16 rad of distant traveled:

The real difference is in the 0.6667 (or 2/3) of the rotation. To find the distance between these positions imagine a triangle formed with the center of the blade (point C), the initial position (point A) and the final position (point B). The angle
is between the two sides known. Using the theorem of the cosine we can find the missing side of the the triangle(which is also the net displacement):


Wave speed = frequency * wavelength
Wave speed = 4 * 25
Wave speed = 100 m/s
Answer:

Explanation:
From the second law of Newton movement laws, we have:
, and we know that a is the acceleration, which definition is:
, so:

The next step is separate variables and integrate (the limits are at this way because at t=0 the block was at rest (v=0):

(This is the indefinite integral), the definite one is:
