1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesna [10]
1 year ago
8

A mass attached to a spring vibrates back and forth. At maximum displacement, the spring force and the

Physics
1 answer:
Svetradugi [14.3K]1 year ago
8 0

ANSWER

Velocity of the mass reaches zero

EXPLANATION

We want to identify what hapens to a mass attached toa a spring at maximum displacement.

When a mass attached to a spring is at its maximum position of displacement, the direction of the mass begins to change. This implies that the velocity of the mass will reach zero.

Hence, at maximum displacement, the velocity of the mass reaches zero.

You might be interested in
A gas contained within a piston-cylinder assembly, initially at a volume of 0.1 m3 , undergoes a constant-pressure expansion at
Gnom [1K]

Answer:

Work: 4.0 kJ, heat: 4.25 kJ

Explanation:

For a gas transformation at constant pressure, the work done by the gas is given by

W=p(V_f -V_i)

where in this case we have:

p = 2 bar = 2\cdot 10^5 Pa is the pressure

V_i = 0.1 m^3 is the initial volume

V_f = 0.12 m^3 is the final volume

Substituting,

W=(2\cdot 10^5)(0.12-0.10)=4000 J = 4.0 kJ

The 1st law of thermodynamics also states that

\Delta U = Q-W

where

\Delta U is the change in internal energy of the gas

Q is the heat absorbed by the gas

Here we know that

\Delta U = +0.25 kJ

Therefore we can re-arrange the equation to find the heat absorbed by the gas:

Q=\Delta U + W = 0.25 kJ + 4.0 kJ = 4.25 kJ

7 0
4 years ago
the chef was careless and put the aluminum cookie sheet directly on the hot stove, which melted 0.05 kg of the aluminum. how muc
sergejj [24]

Heat required to melt 0.05 kg of aluminum is 28.7 kJ.

<h3>What is the energy required to melt 0.05 kg of aluminum?</h3>

The heat energy required to melt 0.05 kg of aluminum is obtained from the heat capacity of aluminum and the melting point of aluminum.

The formula to be used is given below:

  • Heat required = mass * heat capacity * temperature change

Assuming the aluminum sheet was at room temperature initially.;

Room temperature = 25 °C

Melting point of aluminum = 660.3 °C

Temperature difference = (660.3 - 25) = 635.3 903

Heat capacity of aluminum = 903 J/kg/903

Heat required = 0.05 * 903 * 635.3

Heat required = 28.7 kJ

In conclusion, the heat required is obtained from the heat change aluminum and the mass of the aluminum melted.

Learn more about heat capacity at: brainly.com/question/21406849

#SPJ1

3 0
2 years ago
How much water will flow in 30 secs through 200 mm of capillary tube of 1.50 mm in diameter, if the pressure difference across t
Paladinen [302]

The water outflow in 30 secs through 200 mm of the capillary tube is mathematically given as

Qo=1.6 \times 10^{2} \mathrm{~mL}

<h3>What is the water outflow in 30 secs through 200 mm of the capillary tube?</h3>

\begin{aligned}\Delta P &=6660 \mathrm{~m} / \mathrm{m}^{2} \\\mu &=8.01 \times 10^{-4} \text { Pas } \\t &=30 \mathrm{~s} \\L &=200 \mathrm{~mm}=200 \times 10^{-3} \mathrm{~m} \\D &=1.5 \mathrm{~mm}=1.5 \times 10^{-3} \mathrm{~m} \Rightarrow \gamma=\frac{1.5 \times 10^{-3}}{2} \mathrm{~m}\end{aligned}

Generally, the equation for Rate of flow of Liquid is  mathematically given as

\\$$Q=\frac{\pi r^{4} \times \Delta P}{8 \mu L}

$$

Where dP is pressure difference r is the radius

\mu is the viscosity of water

L is the length of the pipe

Q=\frac{\pi \times\left(\frac{1.5 \times 10^{-3}}{2}\right)^{4} \times 6660}{8 \times 8.01 \times 10^{-4} \times 200 \times 10^{-3}}

Q=5.2 \mathrm{~mL} / \mathrm{s}

In $30s the quantity that flows out of the tube

&Qo=5.2 \times 30 \\&Qo=1.6 \times 10^{2} \mathrm{~mL}

In conclusion, the quantity that flows out of the tube

Qo=1.6 \times 10^{2} \mathrm{~mL}

Read more about the flows rate

brainly.com/question/27880305

#SPJ1

5 0
2 years ago
A speeding Thunderbird left skid marks on the road that were 76.7 m long when it came to a stop. If the acceleration of the car
FrozenT [24]

Answer: 39.2 m/s

Explanation:

You can use the kinematic equation:

v_f^2=v_i^2+2a*d

We know the final velocity because it says it came to a stop. So now all we gotta do is plug in.

0^2=v_i^2+2(-10)(76.7)\\v_i^2=1,534\\v_i=\sqrt{1534} \\=39.166 m/s

4 0
3 years ago
A car is traveling at a speed of 10m/s. A 0.5kg clump of mudis
CaHeK987 [17]

Answer:B

Explanation:

Given

speed of car v=10 m/s

mass of clump m=0.5 kg

Radius of car tire r=0.2 m

Since the tire is rotating about axle so a centripetal force is acting constantly on each particle towards the center of tire.

Centripetal force is given by

F_c=\frac{mv^2}{r}

where m=mass\ of\ element

v=speed

r=distance\ from\ center

F_c=\frac{0.5\times 10^2}{0.2}

F_c=250\ N (inward)

           

3 0
3 years ago
Other questions:
  • Once the magma found at location "E" cools and crystalizes, it will
    6·1 answer
  • The idea that our bodies help our minds think is called:
    13·2 answers
  • What type of radiation does nuclear fission produce?
    6·2 answers
  • Describe how the properties of the compound carbon monoxide (CO) differ from the properties of the elements in the compound.
    12·2 answers
  • You have a rock sample and analyze it for the presence of radioactive isotopes in order to determine when it was formed. You fin
    5·1 answer
  • · An object’s inertia is directly proportional to its _____________
    10·1 answer
  • What is the temperature if the peak of a blackbody spectrum is at 18-nm?
    12·1 answer
  • If the radius of the earth was suddenly tripled and its mass doubled, the surface gravitational acceleration would become: A) 9.
    15·1 answer
  • ________________ happens when two waves pass through each other and combine.
    15·1 answer
  • Equilibrium of forces
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!