Answer:
x = 6.94 m
Explanation:
For this exercise we can find the speed at the bottom of the ramp using energy conservation
Starting point. Higher
Em₀ = K + U = ½ m v₀² + m g h
Final point. Lower
= K = ½ m v²
Em₀ = Em_{f}
½ m v₀² + m g h = ½ m v²
v² = v₀² + 2 g h
Let's calculate
v = √(1.23² + 2 9.8 1.69)
v = 5.89 m / s
In the horizontal part we can use the relationship between work and the variation of kinetic energy
W = ΔK
-fr x = 0- ½ m v²
Newton's second law
N- W = 0
The equation for the friction is
fr = μ N
fr = μ m g
We replace
μ m g x = ½ m v²
x = v² / 2μ g
Let's calculate
x = 5.89² / (2 0.255 9.8)
x = 6.94 m
The statement "<span>The maximum intensity increases, and the peak wavelength decreases."</span> is true regarding how black body radiation changes as the temperature of the radiating object increases. Temperature is directly proportional to intensity but inversely proportional to the wavelength.
meter, millimeters, kilometers. liters. kilograms. centimeters etc... look up the rest
Answer:
13 km
Explanation:
The bird flies from the runner, to the finish line, and back to the runner. We can write two equations for the distance it travels:
d = 7.8 km + 7.8 km − 4.9 km/hr × t
d = 24.5 km/hr × t
Solve for t in the second equation and substitute into the first:
t = d / 24.5
d = 7.8 + 7.8 − 4.9 (d / 24.5)
d = 15.6 − 0.2 d
1.2 d = 15.6
d = 13
The bird flies a cumulative distance of 13 km.
Answer:f^n=m(a+g)
Explanation:khan academy said