1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
1 year ago
6

I need to know the answer this, please and thank you it’s past my bed time lol

Mathematics
1 answer:
Angelina_Jolie [31]1 year ago
5 0

Answer:

To find the slope-intercept equation of a line, we need the slope (m) and the y-intercept (b).

The slope-intercept equation is noted as:

y=mx+b

To find the slope, we will use the following formula:

m=\frac{y_2-y_1}{x_2-x_1}

Line 1:

The line passes through the points (-1, -4) and (1, 2). Using these points, we will solve the slope:

\begin{gathered} m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ m=\frac{2-(-4)}{1-(-1)} \\ m=\frac{2+4}{1+1} \\ m=\frac{6}{2}=3 \end{gathered}

Then, using the point (-1, -4), we will solve for b:

\begin{gathered} y=mx+b \\ -4=3(-1)+b \\ -4=-3+b \\ b=-4+3 \\ b=-1 \end{gathered}

Now that we have the values of slope (m) and y-intercept (b), we now know that the slope-intercept form of line 1 is:

\begin{gathered} y=mx+b \\ y=3x-1 \end{gathered}

Line 2:

Following the same process, we will find the slope (m), then the y-intercept (b).

Line 2 passes through points (-4, 0) and (0,4)

\begin{gathered} m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ m=\frac{4-0}{0-(-4)} \\ m=\frac{4}{0+4} \\ m=\frac{4}{4}=1 \end{gathered}

Then solve for the y-intercept (b) using the point (-4, 0):

\begin{gathered} y=mx+b \\ 0=-4+b \\ b=4 \end{gathered}

The equation would then be:

\begin{gathered} y=mx+b \\ y=x+4 \end{gathered}

Line 3:

Line 3 passes through points (1, 0) and (0,2)

\begin{gathered} m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ m=\frac{2-0}{0-1} \\ m=\frac{2}{-1}=-2 \end{gathered}\begin{gathered} y=mx+b \\ 0=-2(1)+b \\ 0=-2+b \\ b=2 \end{gathered}

The equation then would be:

\begin{gathered} y=mx+b \\ y=-2x+2 \end{gathered}

Line 4:

Line 4 passes through points (-2, 3) and (2, 1)

\begin{gathered} m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\ m=\frac{1-3}{2-(-2)} \\ m=\frac{-2}{4}=-\frac{1}{2} \end{gathered}\begin{gathered} y=mx+b \\ 3=-\frac{1}{2}(-2)+b \\ 3=1+b \\ b=3-1 \\ b=2 \end{gathered}

The equation is then:

y=-\frac{1}{2}x+2

With all these, we can write each line's corresponding letter:

Line 1: A

Line 2: E

Line 3: B

Line 4: G

You might be interested in
Calculate the axis of symmetry in the equation Y = (x+1) (x-4)
algol [13]

Answer:

<em>Every </em><em>parabola </em><em>has </em><em>a </em><em>turning</em><em> point</em><em> </em><em>called </em><em>the </em><em>axis</em><em> of</em><em> symmetry</em><em>,</em><em>so </em><em>for </em><em>this </em><em>question</em><em> </em><em>you </em><em>just</em><em> </em><em>have </em><em>to </em><em>find </em><em>the </em><em>turning</em><em> </em><em>points</em>

<em>x </em><em>turning</em><em> </em><em>point</em><em>=</em><em> </em><em>-b/</em><em>2</em><em>a</em><em>,</em><em>and </em><em>the </em><em>y </em><em>turning</em><em> </em><em>point</em><em> </em><em>is </em><em>gotten</em><em> </em><em>by </em><em>replacing</em><em> </em><em>the </em><em>value </em><em>of </em><em>x </em><em>in </em><em>the </em><em>equation</em>

<em>y=</em><em>(</em><em>x+</em><em>1</em><em>)</em><em>(</em><em>x-4)</em>

<em> </em><em> </em><em>=</em><em>x^</em><em>2</em><em>-</em><em>3</em><em>x</em><em>-</em><em>4</em>

<em>a </em><em>is </em><em>1</em><em>,</em><em>b </em><em>is </em><em>-</em><em>3</em><em> </em><em>and </em><em>c </em><em>is </em><em>-</em><em>4</em>

<em>x=</em><em> </em><em>-</em><em>(</em><em>-</em><em>3</em><em>)</em><em>/</em><em>2</em><em>(</em><em>1</em><em>)</em>

<em> </em><em> </em><em>=</em><em>1</em><em>.</em><em>5</em>

<em>and </em><em>y=</em><em>x^</em><em>2</em><em>-</em><em>3</em><em>x</em><em>-</em><em>4</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>1</em><em>.</em><em>5</em><em>^</em><em>2</em><em>-</em><em>3</em><em>(</em><em>1</em><em>.</em><em>5</em><em>)</em><em>-</em><em>4</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>-</em><em>6</em><em>.</em><em>2</em><em>5</em>

<em>therefore</em><em> </em><em>the </em><em>axis </em><em>of</em><em> symmetry</em><em> is</em><em> (</em><em>1</em><em>.</em><em>5</em><em>,</em><em>-</em><em>6</em><em>.</em><em>2</em><em>5</em><em>)</em>

<em>I </em><em>hope </em><em>this </em><em>helps</em>

6 0
3 years ago
The result of which expression will best estimate the actual product
prisoha [69]

Answer:

The answer is,

(-1) \times \frac {1}{2} \times (-1) \times (1)

Step-by-step explanation:

The given product is,

\frac {-4}{5} \times \frac{3}{5} \times \frac{-6}{7} \times \frac {5}{6}

= \frac {12}{35}

\simeq 0.3429 ---------------------(1)

Now, the first product to compare is,

(-1) \times \frac {1}{4} \times (-1) \times (-1)

= - 0.25 ----------------------------(2)

The second product to compare is,

(-1) \times \frac {1}{2} \times (-1) \times (1)

= 0.5 ------------------------(3)

The 3rd product to compare is,

\frac {-4}{2} \times \frac {3}{2} \times \frac{-2}{5} \times \frac {5}{2}

= 3 ----------------------------(4)

The 4th product to compare is,

\frac {-3}{4} \times \frac {-3}{4} \times \frac {-1}{5} \times \frac {1}{2}

= \frac {-9}{160}

= 0.05625 -----------------(5)

Comparing all the values , we get (3) is closest to (1).

Hence, we get, the answer is,

(-1) \times \frac {1}{2} \times (-1) \times (1)

3 0
3 years ago
You want to make a snowman. The ball of snow that you use for the base has a volume of about 9,203 cubic inches. Find the radius
Katyanochek1 [597]
4/3 pi r^3 = 9203

r^3 = 9203 / (4/3 * 3.14)  = 2198.17

radius r  =  13 inches  (A)
7 0
3 years ago
Please help i will mark branliest
mafiozo [28]

Answer:

The answer is d

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
PLEASE PLEASE HELP! :) How is finding the area of a rectangle related to the distributive property?
laila [671]
It is related to the distributive property because you could show the distributive property by using the areas of rectangles. 

6 0
3 years ago
Other questions:
  • Can someone help me with this question
    5·1 answer
  • What is the volume of the square pyramid ?
    9·2 answers
  • A 1000 KG car has 50,000 joules of kinetic energy. What is the speed?
    7·2 answers
  • 1,200. / 500 =<br><br> 2<br> 2.4<br> 2.400
    9·1 answer
  • If f(x) = 0.5x and g(x) = 0.25x. Which statement is true?
    7·1 answer
  • (2x3)^2=5^2 <br><br> Need help on this please
    11·1 answer
  • PLS Answer these questions! I have a test!
    15·2 answers
  • A man invests in a bank he gets 3% per year compound interest his final balance is £10927.27 after 3 years what was his investme
    6·2 answers
  • I rlly need this answer pls help
    14·1 answer
  • Dan rolls 2 fair dice and adds the results from each. Work out the probability of getting a total less than 3.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!