Answer:
sure I will helpy you iru
In an uniformly accelerated motion, the velocity of the object follows the law:

where

is the initial velocity, a the acceleration and t the time.
In our problem, the robot starts from rest, so the initial speed is zero:

. The robot is in free fall, so the acceleraion is the gravitational acceleration

. therefore, after a time

, the velocity is
If I am reading this correct, the energy content would decrease for the liquid to solidify
Answer : The magnitude of the orbital angular momentum for its most energetic electron is, 
Explanation :
The formula used for orbital angular momentum is:

where,
L = orbital angular momentum
l = Azimuthal quantum number
As we are given the electronic configuration of Fe is, ![[Ar]3d^64s^2](https://tex.z-dn.net/?f=%5BAr%5D3d%5E64s%5E2)
Its most energetic electron will be for 3d electrons.
The value of azimuthal quantum number(l) of d orbital is, 2
That means, l = 2
Now put all the given values in the above formula, we get:


Therefore, the magnitude of the orbital angular momentum for its most energetic electron is, 
The formula for work is:
W = F * d Where W is work, F is Force, and d is distance.
Without doing any math, it can be seen from the equation that work is directly proportional to the force applied and the distance it travels. The homerun hit both traveled more distance and had a grater force applied to it in order to achieve this distance (assuming both baseballs weighed the same). Based on this reasoning, it is valid to conclude that the baseball which was a homerun was the hit that accomplished more work.