Answer:
Explanation:
Part A) Using
light intensity I= P/A
A= Area= π (Radius)^2= π((0.67*10^-6m)/(2))^2= 1.12*10^-13 m^2
Radius= Diameter/2
P= power= 10*10^-3=0.01 W
light intensity I= 0.01/(1.12*10^-13)= 9*10^10 W/m^2
Part B) Using
I=c*ε*E^2/2
rearrange to solve for E=
((I*2)/(c*ε))
c is the speed of light which is 3*10^8 m/s^2
ε=permittivity of free space or dielectric constant= 8.85* 10^-12 F⋅m−1
I= the already solved light intensity= 8.85*10^10 W/m^2
amplitude of the electric field E=
(9*10^10 W/m^2)*(2) / (3*10^8 m/s^2)*(8.85* 10^-12 F⋅m−1)
---> E=
(1.8*10^11) / (2.66*10^-3) =
(6.8*10^13) = 8.25*10^6 V/m
Answer:
turntable with a moment of inertia of 7.2 × − ⋅ rotates freely with an angular speed of 6.5 ⁄ . Riding on the rim of the turntable, 2 from the center, is a hamster. When the hamster walks to the center of the turntable, the angular speed of the turntable becomes ⁄. What is the mass of hamster?
Explanation:
Answer:
Hope i could help!
Explanation:
so all but one light could be burned out, and the last one will still function.
The energy of a photon is given by

where

is the Planck constant
f is the frequency of the photon
In our problem, the frequency of the light is

therefore we can use the previous equation to calculate the energy of each photon of the green light emitted by the lamp:
Answer:
So the conclusion is that in presence of air net force acting downward reduces for feather and hence falls slower than coin. But in absence of air resistance, net downward force is just equal to force due to gravity which is same for both coin and feather and hence they fall down at the same rate.