1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlekseyPX
1 year ago
11

a car initially at rest can accelerate at 7 m/s^2 how long will it take the car to reach 60 m/s and how far will it travel durin

g this time
Physics
1 answer:
Alex787 [66]1 year ago
7 0

1. The time taken for the car to reach a velocity of 60 m/s is 8.57 s

2. The distance travelled during the time is 257.14 m

<h3>What is acceleration? </h3>

The acceleration of an object is defined as the rate of change of velocity which time. It is expressed as

a = (v – u) / t

Where

  • a is the acceleration
  • v is the final velocity
  • u is the initial velocity
  • t is the time

1. How to determine the time

  • Initial velocity (u) = 0 m/s
  • Acceleration (a) = 7 m/s²
  • Final velocity (v) = 60 m/s
  • Time (t) =?

a = (v – u) / t

Thus,

t = (v – u) / a

t = (60 – 0) / 7

t = 8.57 s

2. How to determine the distance

  • Initial velocity (u) = 0 m/s
  • Acceleration (a) = 7 m/s²
  • Final velocity (v) = 60 m/s
  • Distance (s) = ?

v² = u² + 2as

60² = 0² + (2 × 7 × s)

3600 = 0 + 14s

3600 = 14s

Divide both sides by 14

s = 3600 / 14

s = 257.14 m

Learn more about acceleration and velocity:

brainly.com/question/491732

brainly.com/question/19466392

#SPJ1

You might be interested in
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
(4A) The mass of Earth is 5.972 * 10^24 kg, and the radius of Earth is 6,371 km.
faltersainse [42]

Answer:

x₁ = 345100 km

Explanation:

The direction of the attraction forces between the earth and the object, and between the moon and the object, are in opposite direction and  (along the straight line between the centers of earth and moon) and as gravity is always attractive, the net force will become zero when both forces are equal. According to this:

Let  call "x₁"  distance between center of the earth and the object, and

"x₂" the distance between center of the moon and the object, Mt mass of the earth, Ml mass of the moon, m₀ mass of the object

we can express:

F₁  ( force between earth and the object )

F₁ = K *  Mt * m₀/ ( x₁)²        K is a gravitational constant

F₂  (force between mn and the object)

F₂ = K * Ml * m₀ / (x₂)²

Then:

F₁ = F₂               K*Mt*m₀ / x₁²   =  K*Ml*m₀ /x₂²

Or  simplifying the expression

Mt/ x₁²  =  Ml/ x₂²

We know that   x₁   +  x₂  = 384000 Km then

x₁ =  384000 - x₂

Mt/( 384000 - x₂)²  =  Ml / x₂²

Mt *  x₂²  =  Ml *( 384000 - x₂)²

We need to solve for x₂

Mt *  x₂²  =  Ml *[ ( 384000)² + x₂² - 768000*x₂]

By substitution:

5.972*10∧24*x₂² = 7.348*10∧22 * [ 1.47*10∧11 ] + 7.348*10∧22*x₂² -

                                7.348*10∧22*768000*x₂

Simplifying by 10∧22

5.972*10²*x₂²  = 7.348* [ 1.47*10∧11 ] + 7.348*x₂²- 7.348*768000*x₂

Sorting out

5.972*10²*x₂²- 7.348*x₂² = 10.80*10∧11 - 56,43* 10∧5*x₂

(597,2 - 7,348 )* x₂²  = 10.80*10∧11 - 56.43*10∧5*x₂

590x₂²  + 56.43*10∧5*x₂ - 10.80*10∧11 = 0

Is a second degree equation

x₂  =  -56.43*10∧5 ± √3184*10∧10 + 25488*10∧11  / 1160

x₂ ₁  = -56.43*10∧5 + √3184*10∧10 + 25488*10∧11  / 1160

x₂ ₁  =  -56.43*10∧5 + √3184*10∧10 + 254880*10∧10  / 1160

x₂ ₁  = -56.43*10∧5 + 10∧5 [ √3184 + 254880 ] /1160

x₂ ₁  =  -56.43*10∧5 + 508* 10∧5  / 1160

x₂ ₁  =  451.27*10∧5/1160

x₂ ₁  =  4512.7*10∧4 /1160

x₂ ₁  = 3.89*10∧4  km (distance between the moon  and the object)

x₂ ₁  = 38900 km

x₂ = 38900 km

We dismiss the other solution because is negative and there is not a negative distance

Then the distance between the earth and the object is:

x₁  = 384000 - x₂

x₁ = 384000 - 38900

x₁ = 345100 km

5 0
3 years ago
Which characteristic best identifies a pure substance?
RSB [31]
<span> A pure substance is an material which contains atoms of only one kind.
It has fixed physical and chemical properties such as boiling point, melting point, valency, density and more.</span>
8 0
3 years ago
A 6 kg bowling ball is accelerated at a rate of 2.3 m/s² down the lane. How much force was necessary to produce this acceleratio
ira [324]
According to Newton's 2nd law of motion:
F = m * a where F is the force applied in Newtons, m is the mass of the object in kg, and a is the acceleration of the object in m/s^{2}.
Therefore the force applied in this situation is simply:
F = 6 kg * 2.3 m/s^{2} = 13.8 N
Hope this helps!
6 0
3 years ago
Which of the following statements are true about the lenses used in eyeglasses to correct nearsightedness and farsightedness? (T
Slav-nsk [51]

Answer:

A: They produce a real image.

Explanation:

The images formed on the retina of the eye for a normal visibility must always be real.

Only a real image can be physically projected on any physical object whereas the virtual images are visible due to reflections.

  • The nearsightedness is corrected with the help of a concave lens since it is the condition of the eye lens remaining thick and curved to converge the rays entering the eyes after a shorter distance which results in their image formation even before the retinal surface so to initially diverge them a bit so that they converge on the retinal surface and form the image there we use concave lens. Vice-versa of the above justification in  the case of farsightedness.
4 0
3 years ago
Other questions:
  • An ultrasound unit is being used to measure a patient’s heartbeat by combining the emitted 2.0 MHz signal with the sound waves r
    14·1 answer
  • How can you tell if a diamond real or fake
    5·2 answers
  • Obesity refers to gradual weight gain as a person grows older
    8·1 answer
  • Arrange the distances between Earth and various celestial objects in order from least to greatest. Use the conversion table to h
    8·1 answer
  • it is about 384,750 kilometers from earth to the moon. it took the apollo astronauts about 2 days and 19.5 hours to fly to the m
    11·2 answers
  • Explain why people who eat only plants must eat a variety of plants in order to obtain all the nutrients they need
    8·1 answer
  • Find the ratio of average speed of a scooter moving at 30m/min and a car moving at 27km/hr
    6·1 answer
  • A cylinder of mass 8.0 kg rolls without slipping on a horizontal surface. At a certain instant its center of mass has a speed of
    9·1 answer
  • Now far is it to the moon?
    14·2 answers
  • a car travel uniformly speed of 30 km/h for 30 minutes and then at uniform speed of 60km/h for next 30min calculate the average
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!