In voluntay smoth tissue muscles
Answer:
a. A = 0.735 m
b. T = 0.73 s
c. ΔE = 120 J decrease
d. The missing energy has turned into interned energy in the completely inelastic collision
Explanation:
a.
4 kg * 10 m /s + 6 kg * 0 m/s = 10 kg* vmax
vmax = 4.0 m/s
¹/₂ * m * v²max = ¹/₂ * k * A²
m * v² = k * A² ⇒ 10 kg * 4 m/s = 100 N/m * A²
A = √1.6 m ² = 1.26 m
At = 2.0 m - 1.26 m = 0.735 m
b.
T = 2π * √m / k ⇒ T = 2π * √4.0 kg / 100 N/m = 1.26 s
T = 2π *√ 10 / 100 *s² = 1.99 s
T = 1.99 s -1.26 s = 0.73 s
c.
E = ¹/₂ * m * v²max =
E₁ = ¹/₂ * 4.0 kg * 10² m/s = 200 J
E₂ = ¹/₂ * 10 * 4² = 80 J
200 J - 80 J = 120 J decrease
d.
The missing energy has turned into interned energy in the completely inelastic collision
Answer:
34 m/s
Explanation:
Potential energy at top = kinetic energy at bottom + work done by friction
PE = KE + W
mgh = ½ mv² + Fd
mg (d sin θ) = ½ mv² + Fd
Solving for v:
½ mv² = mg (d sin θ) − Fd
mv² = 2mg (d sin θ) − 2Fd
v² = 2g (d sin θ) − 2Fd/m
v = √(2g (d sin θ) − 2Fd/m)
Given g = 9.8 m/s², d = 150 m, θ = 28°, F = 50 N, and m = 65 kg:
v = √(2 (9.8 m/s²) (150 m sin 28°) − 2 (50 N) (150 m) / (65 kg))
v = 33.9 m/s
Rounded to two significant figures, her velocity at the bottom of the hill is 34 m/s.
Answer:
yes it flows through flow paths.
Explanation:
Answer:
Explanation:
This is a circular motion questions
Where the oscillation is 27.3days
Given radius (r)=3.84×10^8m
Circular motion formulas
V=wr
a=v^2/r
w=θ/t
Now, the moon makes one complete oscillation for 27.3days
Then, one complete oscillation is 2πrad
Therefore, θ=2πrad
Then 27.3 days to secs
1day=24hrs
1hrs=3600sec
Therefore, 1day=24×3600secs
Now, 27.3days= 27.3×24×3600=2358720secs
t=2358720secs
Now,
w=θ/t
w=2π/2358720 rad/secs
Now,
V=wr
V=2π/2358720 ×3.84×10^8
V=1022.9m/s
Then,
a=v^2/r
a=1022.9^2/×3.84×10^8
a=0.0027m/s^2