The answer is helium 0.09 kg/m³.
The wave will move faster in the gas that is having lowest density.
As comparison to other gases-hydrogen, oxygen and radon; helium has the lowest density that is 0.09 kg/m³.
So, waves will move fastest in helium gas as it is having lowest density.
So the answer is helium gas that is waves will move fastest in helium gas.
B) <span>It is the instantaneous speed of the bike rider.</span>
Answer:
I like rain. Clouds must be condensing at 100% humidity, the pressure must be low, and the temperature must be above 0 degrees.
Explanation:
Hope this helps!
Answer:
K3PO4
Explanation:
Recall that colligative properties depends on the number of particles present. The greater the number of particles present, the greater the degree of colligative properties of the solution. Let us look at each option individually;
SrCr2O7-------> Sr^2+ + Cr2O7^2- ( 2 particles)
C4H11N (not ionic in nature hence it can not dissociate into ions)
K3PO4-------> 3K^+ + PO4^3- (4 particles)
Rb2CO3-------> 2Rb^+ + CO3^2- (3 particles)
Hence K3PO4 has the greatest number of particles and will display the greatest colligative effect.
Answer: The volume of the sample after the reaction takes place is 29.25 L.
Explanation:
The given reaction equation is as follows.

So, moles of product formed are calculated as follows.
Hence, the given data is as follows.
= 0.17 mol,
= 0.255 mol
= 19.5 L, 
As the temperature and pressure are constant. Hence, formula used to calculate the volume of sample after the reaction is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that the volume of the sample after the reaction takes place is 29.25 L.