Answer:

Explanation:
Assume that the distance travelled initially is d.
In order to stop the block you need some external force which is friction.
If we use the law of energy conservation:

a)
Looking at the formula you can see that the mass doesn't affect the distance travelled, as lng as the initial velocity is constant (Which indicates that the force must be higher to push the block to the same speed) therefore the distance is the same.
b) If the velocity is doubled, then the distance travelled is multiplied by 4, because the distance deppends on the square of the velocity.
Answer:
By plotting the locations of earthquakes
Explanation:
When plotting the locations of earthquakes, scientists have been able to locate plate boundaries and also be able to determine plate characteristics and predict the movement of plates
Answer:
a)
, b) 
Explanation:
a) The minimum coeffcient of friction is computed by the following expression derived from the Principle of Energy Conservation:




b) The speed of the block is determined by using the Principle of Energy Conservation:




The radius of the circular loop is:



Answer:
a = 0.01m/s²
Explanation:
V_f = V_0+a*t
V_f = Velocity final
V_0 = Velocity initial
a = acceleration
t = time
a = (V_f-V_0)/t
a = (540m/s-240m/s)/((8hr)*(60min/1hr)*(60s/1min))
a = 0.01m/s²